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Abstract

The tensor train (TT) rank has received increasing attention in tensor completion due to its

ability to capture the global correlation of high-order tensors (order > 3). For third order visual

data, direct TT rank minimization has not exploited the potential of TT rank for high-order

tensors. The TT rank minimization accompany with ket augmentation, which transforms a lower-

order tensor (e.g., visual data) into a higher-order tensor, suffers from serious block-artifacts. To

tackle this issue, we suggest the TT rank minimization with nonlocal self-similarity for tensor

completion by simultaneously exploring the spatial, temporal/spectral, and nonlocal redundancy

in visual data. More precisely, the TT rank minimization is performed on a formed higher-order

tensor called group by stacking similar cubes, which naturally and fully takes advantage of the

ability of TT rank for high-order tensors. Moreover, the perturbation analysis for the TT low-

rankness of each group is established. We develop the alternating direction method of multipliers

tailored for the specific structure to solve the proposed model. Extensive experiments demonstrate

that the proposed method is superior to several existing state-of-the-art methods in terms of both

qualitative and quantitative measures.

Key words: low-rank tensor completion, tensor train rank, nonlocal self-similarity, alternating

direction method of multipliers.

1 Introduction

Tensor completion aims at estimating missing entries or damaged parts in high-dimensional data and

plays an important role in computer vision, e.g., color image inpainting [2, 29, 34, 54], video in-

painting [6, 8, 52], hyperspectral images recovery [31, 48, 55], higher-order web link analysis [28, 35],
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and seismic data reconstruction [14]. As a typical ill-posed inverse problem, stable tensor comple-

tion processes usually rely on prior knowledge of the underlying tensor. Recently, the low-rankness

prior has demonstrated to be a powerful tool for tensor completion, namely low-rank tensor comple-

tion (LRTC). A common way to characterize the low-rankness of tensors is to decompose them into

several lower-dimensional multilinear spaces. Representative works on tensor rank include CANDE-

COMP/PARAFAC (CP) rank, Tucker rank [27], and tubal rank [26]; see Section 3 for a brief review

on these related works.

Recently, the tensor train (TT) rank has achieved great success in LRTC. Given a j-th order tensor

X ∈ Rn1×···×nj , TT decomposition [40] models each element of X by

xi1,...,ij = G1(:, i1, :) · · · Gj(:, ij , :), (1)

where Gk ∈ Rrk−1×nk×rk , k = 1, · · · , j with r0 = rj = 1. The TT rank corresponding to (1) is defined

as (r1, . . . , rj−1). The TT rank has shown to be effective in tensor completion due to its ability of

capturing the intrinsic structure within higher-order tensors. Some optimization methods has been

proposed for TT rank minimization, such as alternating minimization [18, 44], simple low-rank tensor

completion via tensor train (SiLRTC-TT), and tensor completion by parallel matrix factorization via

tensor train (TMac-TT) [1]; see Section 3 for more details.

Nevertheless, existing TT-based LRTC methods still leave much room for further improvement.

Since most multidimensional visual data are of third order in practical applications, direct TT-rank

minimization has not yet excavated the estimation potential of TT rank minimization. When handling

third order visual data, such as color images and multispectral images, most existing methods use

ket augmentation (KA) [30] as a tensor order increment preprocessing to transform a lower-order

tensor into a higher-order tensor. However, KA uses a fixed rule to stack blocks extracted from the

original data, without considering the inherent correlation between different blocks, which leads to

serious block-artifacts on restored images [11]; see Fig. 1 (d) for an example. To overcome this

issue, our previous work [11] used the total variation regularizer to depict the spatial local smoothness

prior of the underlying data. Although alleviating the block-artifacts to some extent, this method is

still a palliative one, due to the ignorance of the intrinsic structural redundancy of real-world data.

These motivate us to find a more adaptive method to retain the strength of TT rank and alleviate

block-artifacts.

In this paper, we propose a novel scheme to adaptively generate higher-order tensors with TT

low-rankness, by exploring the nonlocal self-similarity (NSS) prior of tensor data. As a significant

intrinsic prior of natural images, NSS depicts the redundancy of repeated similar structures across a

natural image, which has been demonstrated to be powerful in various image processing applications

[7, 10, 19, 23, 38, 51]. Our main idea is to stack similar cubes into a higher-order tensor called a group.

The motivation behind is that the similarity between cubes naturally implies the TT low-rankness of

each group, which is more natural and effective than the fixed KA scheme. In fact, the perturbation

analysis for the TT low-rankness of each group is established in Section 4. To explain our motivation,

in Figure 1, we compare the TT low-rankness of two higher-order tensors generated by KA and NSS.

We obtain two insights from Fig. 1. First, the canonical matricizations of the grouped higher-order

tensor obtained by NSS exhibits low-rank property more significantly than that obtained by KA, which
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Figure 1: Comparison of TT low-rankness of higher-order tensors generated by KA and NSS. (a-1, 2, 3) the
augmented tensor, the original data, and an example of grouped tensors. (b-1) to (b-8) the distribution of
singular values of the mode-1 to mode-8 canonical matricizations of the augmented tensor (a-1) and the average
ratio of singular values larger than 1% of the corresponding largest ones is 25.8%. (c-1, 2, 3) the distribution
of singular values of the mode-1, mode-2, and mode-3 canonical matricizations of the grouped tensor (a-3) and
the average ratio of singular values larger than 1% of the corresponding largest ones is 1.5%. (d-1, 2, 3, 4) the
observed data, the recovered results by SiLRTC-TT, TMac-TT, and the proposed method.

can be visually verified by the singular value curves shown in Fig. 1 (c-1, 2, 3) and Fig. 1 (b-1) to (b-8).

Second, the proposed method can effectively alleviate block-artifacts compared with SiLRTC-TT and

TMac-TT.

Once established, we develop a group-based TT rank minimization framework for tensor completion,

which simultaneously exploits various data prior knowledge, such as spatial, temporal/spectral, and

NSS redundancy. The main idea is to consider group as the basis unit of completion, and to impose

the low-TT-rank constraint on each group to learn the correlations of all modes. Specifically, the
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Figure 2: Flowchart of the proposed completion framework.

proposed framework involves three steps. First, we stack j-th order similar cubes together into an

(j + 1)-th order tensor called a group and consider the group as the basis unit of completion. Second,

we complete each group by solving a TT rank minimization model. Third, we calculate the final result

by aggregating the final completed tensor by averaging all completed groups. The flowchart of the

proposed method is illustrated in Fig. 2.

In summary, our contributions are mainly three folds: (1) we propose an adaptive strategy based

on the NSS prior to fully exploit the potential of TT rank for high-order tensors, and establish a

perturbation analysis for the TT low-rankness of groups consisting of similar cubes; (2) we propose

a group-based TT rank minimization framework for tensor completion to simultaneously exploit the

spatial, temporal/spectral, and NSS priors of tensor data; (3) experiments show that our method

outperforms several state-of-the-art methods in handling multiple tensor completion problems.

The outline of this paper is as follows. Section 2 states some basic knowledge about tensors.

Section 3 reviews some works about LRTC. Section 4 gives the details of the proposed method and

establishes a perturbation analysis of the TT low-rankness of each group. Section 5 develops an

alternating direction method of multipliers (ADMM)-based solving algorithm. Section 6 presents

extensive numerical experiments. Section 7 discusses parameters study and the numerical convergence

of the proposed algorithm. Section 8 summarizes this paper.

2 Preliminary

We denote scalars, vectors, matrices, and tensors as lowercase letters (e.g., z), boldface lowercase

letters (e.g., z), boldface capital letters (e.g., Z), and calligraphic letters (e.g., Z), respectively. A

tensor is a high-dimensional array and its order (or mode) is the number of its dimensions. Given a

j-th order tensor Z ∈ Rn1×···×nj , its (i1, . . . , ij)-th component is denoted as zi1,...,ij . A mode-k fiber

of Z is a vector zi1,...,ik−1,:,ik+1,...,ij obtained by varying index ik in while keeping the others fixed.

The Frobenius norm of Z is ‖Z‖F =
√
〈Z,Z〉, where 〈X ,Y〉 =

∑
i1,...,ij

xi1,...,ij · yi1,...,ij is the inner

4



product of two tensors X , Y.

The mode-k canonical matricization of Z is defined as Z[k] ∈ R(
∏k
d=1 nd)×(

∏j
d=k+1 nd), where the

element (i1, . . . , ij) of Z maps to the element (a, b) of Z[k] satisfying

a = 1 +

k∑
d=1

(
(id − 1)

d−1∏
t=1

nt
)

and b = 1 +

j∑
d=k+1

(
(id − 1)

d−1∏
t=k+1

nt
)
.

(2)

In MATLAB, it can be implemented by the reshape function

Z[k] = reshape(Z,Πk
d=1nd,Π

j
d=k+1nd).

We denote the inverse operator as fold[k](Z[k]) = Z. The TT nuclear norm of Z is defined as ‖Z‖∗ =∑j−1
k=1 αk‖Z[k]‖∗, where {αk}j−1

k=1 are positive constants satisfying
∑j−1
k=1 αk = 1.

3 Related works

In this section, we briefly introduce some related works on the definition of tensor rank, including CP

rank, Tucker rank [27], tubal rank [26], and TT rank [40].

The CP rank is defined as the smallest number of rank-one tensors that generate the target tensor.

There exist some heuristic CP-based LRTC methods [35, 33, 41, 42, 50, 54], with promising perfor-

mance. Nevertheless, computing CP rank is generally NP-hard [22], which limits its application. The

Tucker rank is defined as a vector composed of ranks of unfolding matrices of the target tensor [27, 46].

Existing Tucker rank minimization methods include convex relaxation methods [12, 16, 32, 45] and

low-rank matrix factorization methods [24, 49, 56]. The limitation of Tucker rank is that it only cap-

tures the correlation between one mode and all the rest modes of the tensor, due to the unbalanced

matricization scheme in the unfolding operator [1]. The tensor tubal rank is defined as the number

of nonzero singular tubes under the tensor singular value decomposition (tSVD) of the target tensor

(please see [26, 36] for more details). Zhang et al. [53] proposed tensor nuclear norm (TNN) as a con-

vex surrogate of tubal rank for LRTC. Moreover, Lu et al. [37] established the theoretical guarantee

of TNN minimization for low tubal rank tensor recovery from Gaussian measurements.

For TT rank, according to [40], there exists decomposition that makes rk equal to the rank of

the canonical matrix X[k] ∈ R(
∏k
d=1 nd)×(

∏j
d=k+1 nd), a well-balanced matricization characterizing the

correlation between the first k and the rest j − k dimensions of X [1]. Compared with existing works,

the TT decomposition and TT rank have two significant advantages. First, the TT decomposition

is free from the “curse of dimensionality” [40], which enables its applications to large-scale problems.

Second, the TT rank, approximately calculated by the rank of canonical matrices, can capture the

global correlation of higher-order tensors due to its well-balanced matricization scheme, i.e., matricizing

the tensor along permutations of modes.

Researchers have developed a series of methods for TT rank minimization. Grasedyck et al. [18]

and Wang et al. [44] proposed an iterative algorithm by alternatively updating each core tensor.
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However, [18] fixed the TT rank as r1 = · · · = rj−1, and [44] assumed that the TT rank is given.

Recently, Bengua et al. [1] proposed two TT minimization models for LRTC. The first one, simple

low-rank tensor completion via tensor train (SiLRTC-TT), minimizes the sum of nuclear norm of

canonical matrices, i.e.,

min
X

j−1∑
k=1

αk‖X[k]‖∗

s.t. PΩ(X ) = PΩ(T ),

(3)

where X[k] is the mode-k canonical matricization of the tensor X and {αk}j−1
k=1 are positive constants

satisfying
∑j−1
k=1 αk = 1, T ∈ Rn1×...×nj is the observed tensor, Ω is the index of observed entries, and

PΩ(·) is the projection operator that keeps entries in Ω and zeros out others. Another one, tensor

completion by parallel matrix factorization via tensor train (TMac-TT), uses matrix factorization to

approximate the TT rank, i.e.,

min
{Wk}

j−1
k=1

,{Zk}
j−1
k=1

,X

j−1∑
k=1

αk
2
‖WkZk −X[k]‖2F

s.t. PΩ(X ) = PΩ(T ),

(4)

where Wk ∈ R(
∏k
d=1 nd)×rk , Zk ∈ Rrk×(

∏j
d=k+1 nd), and rk is the rank of the matrix X[k].

4 Tensor completion via nonlocal TT rank minimization

The proposed method, called tensor completion via nonlocal TT rank minimization (NL-TT), involves

three main steps: grouping, completion, and aggregation. Below we detail each step.

Grouping. We use a third order tensor T ∈ Rn1×n2×n3 as an example to show how to construct

groups, which can be easily extended to higher-order tensors. We extract reference cubes with size

s × s × n3 with overlapped size o, denoted as {T̂p}tp=1, where the total number of reference cubes is

t = ((n1 − s)/(s − o) + 1) × ((n2 − s)/(s − o) + 1). We use block-matching [10] to find the locations

of similar cubes and adopt the Euclidean distance to measure the similarity between two cubes. A

smaller distance indicates a higher similarity. For each reference cube T̂p, we assume that h cubes

{T̂ ap } (a = 1, 2, . . . , h) similar to T̂p are found in spatial domain. These cubes are chosen to overlap

to avoid possible block effects. Then we stack the similar cubes to form a group Tp ∈ Rs×s×n3×h

satisfying Tp(:, :, :, a) = T̂ ap .

Completion. Let Tp be a j-th order grouped tensor, and Ωp be the indicating known pixels of Tp.
To complete Tp, we consider the following TT nuclear norm minimization model:

min
Xp

‖Xp‖∗ :=

j−1∑
k=1

αk‖Xp,[k]‖∗

s.t. PΩp(Xp) = PΩp(Tp),

(5)

where Xp,[k] is the mode-k canonical matricization of the tensor Xp and {αk}j−1
k=1 are positive constants

satisfying
∑j−1
k=1 αk = 1. The following proposition shows the existence of the solution of the proposed
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model (5).

Proposition 1. The model (5) has at least one minimizer.

The proof is provided in Appendix A.

Aggregation. After completing each group, the obtained estimates actually form an over-complete

representation of the final completion result. Since the cubes are overlapped and one cube can appear

in more than one group, each pixel may be covered by several completed groups. The final completion

result is calculated by first returning completed groups to their original positions and then averaging

all covered cubes pixel-by-pixel.

4.1 Perturbation analysis

We establish a perturbation analysis for the TT low-rankness of the group consisting of similar cubes.

Assume that X is a group with size s× s× n3 × h. Next, we first show that X can be approximated

by a series of TT low-rank tensors. Then, we present a perturbation analysis of the TT nuclear norm

of X and its TT low-rank approximations.

Now we can establish an upper bound between X and a TT rank-(1, 1, 1) tensor.

Theorem 1. Let x be the average column fiber of X , i.e., x = (
∑s
i2=1

∑n3

i3=1

∑h
i4=1 X (:, i2, i3, i4))/(sn3h),

and Y(:, i2, i3, i4) = x, i2 = 1, . . . , s, i3 = 1, . . . , n3, and i4 = 1, . . . , h. Then the TT rank of Y is

(1, 1, 1). Suppose that

max
i2,i3,i4

{‖X (:, i2, i3, i4)− x‖2} ≤ ε.

Let X = Y + E. Then ‖E‖F ≤
√
sn3hε.

We consider the TT rank-(r1, r2, 1) approximation of X .

Theorem 2. Let X̂ be the average row-cube of X , i.e., X̂ = (
∑h
i4=1 X (:, :, :, i4))/h, and Y(:, :, :, i4) =

X̂ , i4 = 1, . . . , h. Then, Y is a TT rank-(r1, r2, 1) tensor, r1 ≤ min{s, sn3h}, and r2 ≤ min{s2, n3h}.
Suppose that

max
i4
{‖X (:, :, :, i4)− X̂‖F } ≤ ε̂.

Let X = Ŷ + Ê. Then ‖Ê‖F ≤
√
hε̂.

Next, we consider the TT rank-(r̃1, r̃2, r) approximation of X . Let R := {1, 2, . . . , r}.

Theorem 3. Let X = Ỹ + Ẽ, where Ỹ(:, :, :, a) = X (:, :, :, a), a = 1, . . . , r, Ỹ(:, :, :, a) = X (:, :, :, 1), a =

r + 1, . . . , h, i.e., Ỹ = [X (:, :, :, 1),X (:, :, :, 2), . . . ,X (:, :, :, r),X (:, :, :, 1), . . . ,X (:, :, :, 1)] ∈ Rs×s×n3×h.

The TT rank of Y is (r̃1, r̃2, r). Suppose that {‖X (:, :, :, b) − X (:, :, :, i4)‖F } ≤ ε̃ for b ∈ R and

i4 = 1, . . . , h. Then

‖Ẽ‖F ≤
√
h− rε̃.

Last, we display a perturbation analysis of the TT nuclear norm of X using the following lemma.

Lemma 1. (Corollary 4.31, [43]) Let X,E ∈ Cm×n(m ≥ n). Then

|σi(X + E)− σi(X)| ≤ ‖E‖F ,

7



where σi(X) is the i-th largest singular value, i = 1, . . . , n.

Theorem 4. Let X = Y + E, s(X ) =
∑3
k=1 αk‖X[k]‖∗, where ‖X[k]‖∗ =

∑
jk
σjk(X[k]) and {αk}3k=1

are positive constants satisfying
∑3
k=1 αk = 1. Then

|s(X )− s(Y)| ≤ c‖E‖F ,

where c is a positive constant.

The proofs are provided in Appendix B.

Remark 1. We can regard the stacked higher-order tensor as a TT low-rank tensor plus a perturba-

tion noisy tensor. In this case, Theorems 1, 2, and 3 show that X can be approximated by the TT

rank-(1, 1, 1), rank-(r1, r2, 1), and rank-(r̃1, r̃2, r) tensors, respectively. Theorem 4 illustrates that the

singular values are insensitive to the perturbation in the tensor. When Y is a TT low-rank tensor and

E is small, the stacked higher-order tensor approximates a TT low-rank tensor.

The above results can be easily extended to higher-order tensors.

5 The ADMM solver

We develop ADMM [5, 17, 39] to solve the convex optimization problem (5). By introducing auxiliary

variables {Mk}j−1
k=1, we obtain the equivalent constrained problem

arg min
X ,Mk

j−1∑
k=1

αk‖Mk[k]‖∗

s.t. PΩ(X ) = PΩ(T ),

X =Mk, k = 1, . . . , j − 1.

(6)

The augmented Lagrangian function of (6) is defined as

Lβ(X ,Mk,Yk) =

j−1∑
k=1

αk

(
‖Mk[k]‖∗ + 〈X −Mk,Yk〉

+
β

2
‖X −Mk‖2F

)
,

(7)

where {Yk}j−1
k=1 are Lagrangian multipliers of the linear constraint and β is the penalty parameter. We

use the following iterative scheme to solve (7):
Ml+1

k = arg min
Mk

L(X l,Mk,Y lk),

X l+1 = arg min
PΩ(X )=PΩ(T )

L(X ,Ml+1
k ,Y lk),

Y l+1
k = Y lk + β(X l+1 −Ml+1

k ).

(8)

We give the details for solving the first two subproblems in (8).
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(1) {Mk}-subproblem. The optimal Mk is given by

Ml+1
k = arg min

Mk

‖Mk[k]‖∗ +
β

2
‖X l+1 −Mk +

Y lk
β
‖2F . (9)

Using the equation ‖X[k]‖F = ‖X‖F , we rewrite the (9) as the following problem:

Ml+1
k = arg min

Mk

‖Mk[k]‖∗ +
β

2
‖X l+1

[k] −Mk[k] +
Y lk[k]

β
‖2F . (10)

Using the singular value thresholding operator [4], Mk has the closed-form solution

Ml+1
k = fold[k]

[
UkS 1

β
(Σk)VT

k

]
, (11)

where X l+1
[k] +

Ylk[k]

β
= UkΣkV

T
k and S 1

β
(Σk) = diag(max(σk− 1

β
)). TheMk-subproblem involves the SVD

of the matrixMk[k] with size pk×qk
(
pk =

∏k
d=1 nd, qk =

∏j
d=k+1 nd, k = 1, . . . , j−1

)
, whose complexity

is O
(
min

(
p2
kqk, pkq

2
k

))
.

(2) X -subproblem. The optimal X is the solution of the following quadratic problem:

X l+1 = arg min
PΩ(X )=PΩ(T )

j−1∑
k=1

αkβ

2
‖X −Ml

k +
Y lk
β
‖2F . (12)

Then X can be calculated by

X l+1 = PΩc

(
j−1∑
k=1

αk

(
Mk −

1

β
Yk
))

+ PΩ(T ). (13)

The cost of computing X is O(
∏j
k=1 nk).

The proposed ADMM-based algorithm is summarized in Algorithm 1. The minimization problem

(6) fits the framework of ADMM, and the proposed model is convex, thus the proposed algorithm is

theoretically convergent [13, 20]. At each iteration, the total cost of computing all variables is

O

(
t

j−1∑
k=1

min
(
p2
kqk, pkq

2
k

))
,

where t is the number of reference cubes, pk =
∏k
d=1 nd, and qk =

∏j
d=k+1 nd, k = 1, . . . , j − 1.

6 Experiments

In this section, we evaluate the performance of the proposed method by extensive experiments on color

images, multispectral images (MSIs), and color videos. We compare our method (NL-TT) with four

well-known methods: HaLRTC [32], tSVD [53], SiLRTC-TT, and TMac-TT [1]. The range of entry

values for all test tensors are scaled into the interval [0, 255]. In color videos tests, as tSVD is only

applicable to third order tensors, we perform it on each frame separately. All numerical experiments

are performed on Windows 10 64-bit and MATLAB R2012a running on a desktop equipped with an

9



Algorithm 1 ADMM-based algorithm for solving (5).

Input: The observed tensor T , index set Ω.
1: Grouping: Perform block-matching to get {Tp}tp=1.
2: Out loop: For p = 1, · · · , t, do
3: Parameters: {αk}j−1

k=1, β, and inner iteration lmax.
4: Initialize: X 0

p = Tp and Y0
p,k = 0.

5: Inner loop: While l ≤ lmax or
‖X l+1
p −X lp‖F
‖X lp‖F

≥ 10−4, do

6: for k = 1 to j − 1 do;
7: update Mk via (11);
8: end for;
9: update Xp via (13);

10: end while, and output X l+1
p .

11: end for, and output completed {Xp}tp=1.
Output: Recovered data X via completed groups {Xp}tp=1.

(a) peppers (b) lena (c) house (d) barbara

(e) facade (f) airplane (g) monarch (h) sailboat

Figure 3: Original images.

Intel(R) Core(TM) i7-6700M CPU with 3.40 GHz and 8 GB of RAM.

We use the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) to evaluate

the quality of restored results. PSNR (dB) and SSIM measure the similarity between the original tensor

and the recovered tensor based on the distance and structural consistency, respectively. By calculating

average PSNR and SSIM values for all bands, we obtain the PSNR and SSIM values of a higher-order

tensor. Higher PSNR and SSIM values indicate better image quality.

Parameters setting. In the block-matching operator, there are three important parameters: the

cube size, the similar cube number, and the overlapping cube size. We set the cube size s ∈ [10, 20] with

the increment 2, the number of similar cubes h ∈ [30, 50] with the increment 4, and the overlapping

10



(a) Observed (b) HaLRTC (c) tSVD (d) SiLRTC-TT (e) TMac-TT (f) NL-TT (g) Original

Figure 4: The results of testing color images with SR = 0.2 recovered by different methods. The first three
rows and second three rows represent random sampling and tube sampling, respectively. From left to right:
(a) the observed image, the results by (b) HaLRTC, (c) tSVD, (d) SiLRTC-TT, (e) TMac-TT, (f) NL-TT,
and (g) the original image.

cube size as o = 1. In our model (5), we assign larger weights to Xp,[k] with balanced sizes, i.e.,

αk =
δk∑j−1
k=1 δk

with δk = min(Πk
d=1nd,Π

j
d=k+1nd), (14)

where nd is the d-th order of Xp and k = 1, . . . , j − 1. In the ADMM solver, we empirically select the

penalty parameter β in (7) from the candidate set: {0.05, 0.08, 0.1, 0.3, 0.5}, to attain the highest

PSNR value. For each completed groups, we stop the proposed algorithm according to the relative

error of the tensor Xp between two successive iterations as follows:

‖X l+1
p −X lp‖F
‖X lp‖F

≤ 10−4. (15)

In addition, we set the maximum inner iterations lmax = 500. We try our best to tune the parameters

involved in the competing algorithms according to the reference papers’ suggestion.
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Table 1: The PSNR and SSIM values obtained by HaLRTC, tSVD, SiLRTC-TT, TMac-TT and NL-
TT for color image data with different sampling rates (SRs). The first three rows and second three
rows represent random sampling and tube sampling, respectively.

Image
SR 0.1 0.2 0.3 0.4

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

lena

HaLRTC 19.29 0.4151 23.10 0.6047 25.68 0.7311 28.00 0.8205

tSVD 19.55 0.3500 23.33 0.5572 26.08 0.7033 28.60 0.8066

SiLRTC-TT 21.67 0.5954 24.80 0.7366 27.01 0.8226 28.90 0.8782

TMac-TT 24.25 0.6829 27.22 0.8097 28.87 0.8584 30.22 0.8902

NL-TT 26.46 0.8110 30.09 0.8970 32.02 0.9309 33.87 0.9528

airplane

HaLRTC 19.80 0.4621 23.18 0.6437 25.62 0.7614 27.97 0.8399

tSVD 19.87 0.4196 23.30 0.6139 25.86 0.7387 28.25 0.8258

SiLRTC-TT 20.81 0.6072 23.42 0.7361 25.62 0.8213 27.55 0.8768

TMac-TT 22.46 0.6766 25.81 0.8105 27.67 0.8622 28.97 0.8915

NL-TT 24.33 0.7840 28.33 0.8929 30.29 0.9268 31.99 0.9489

monarch

HaLRTC 17.12 0.4381 19.59 0.6069 21.89 0.7404 24.20 0.8271

tSVD 17.14 0.3372 19.98 0.5462 22.60 0.6980 25.23 0.8023

SiLRTC-TT 17.95 0.5784 20.32 0.7196 22.38 0.8100 24.39 0.8702

TMac-TT 19.21 0.6621 22.45 0.7912 24.86 0.8505 27.24 0.9046

NL-TT 22.22 0.8307 25.42 0.9140 27.95 0.9496 30.74 0.9729

lena

HaLRTC 17.54 0.2942 20.97 0.4651 23.59 0.6144 25.88 0.7272

tSVD 17.88 0.2570 20.85 0.4186 23.29 0.5676 25.50 0.6857

SiLRTC-TT 20.90 0.5462 23.61 0.6830 25.69 0.7732 27.35 0.8353

TMac-TT 21.62 0.5629 24.60 0.7193 26.22 0.7764 27.55 0.8392

NL-TT 23.94 0.7351 27.45 0.8459 29.33 0.8928 31.38 0.9259

airplane

HaLRTC 17.81 0.3050 20.77 0.4847 23.15 0.6214 25.29 0.7289

tSVD 17.97 0.2900 20.66 0.4588 22.97 0.5926 25.06 0.7029

SiLRTC-TT 20.20 0.5570 22.49 0.6809 24.33 0.7661 26.09 0.8298

TMac-TT 21.06 0.6169 23.15 0.7114 24.41 0.7729 26.17 0.8416

NL-TT 22.45 0.7255 25.25 0.8210 27.29 0.8749 29.24 0.9149

monarch

HaLRTC 16.04 0.3424 18.28 0.5031 20.12 0.6363 21.93 0.7401

tSVD 16.33 0.2786 18.21 0.4312 19.90 0.5620 21.65 0.6791

SiLRTC-TT 17.46 0.5472 19.48 0.6695 21.19 0.7606 22.83 0.8290

TMac-TT 15.12 0.3466 18.66 0.6710 21.74 0.7739 23.49 0.8282

NL-TT 18.07 0.6564 22.33 0.8462 24.53 0.9086 26.25 0.9391

6.1 Color images

We evaluate the performance of NL-TT on color images. The test images of size 256 × 256 × 3 are

shown in Fig. 3. For color images, we test two kinds of missing entries: (1) random missing entries,

including random sampling and tube sampling; and (2) structural missing entries, including missing

curves, missing slices, missing texts, and missing blocks. The sampling rate (SR) is tested from 0.05

to 0.6.

Random sampling and tube sampling. The random sampling denotes that the entries in R,
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Figure 5: The PSNR and SSIM values of the reconstructed color image results for random missing entries by
different methods.

G, and B channels are randomly and independently lost in the color image, see the first three rows

in Fig. 4 (a). The tube sampling means that the entries are randomly lost at the same location in

R, G, and B channels, see the second three rows in Fig. 4 (a). The task for recovering the tube

sampling is harder than the random sampling. Fig. 4 shows the visually restored results recovered

by HaLRTC, tSVD, SiLRTC-TT, TMac-TT, and NL-TT. The first three lines are random sampling

with SR = 0.2. The second three lines are tube sampling with SR = 0.2. We observe that the results

recovered by both HaLRTC and tSVD have undesired thorns. Although SiLRTC-TT and TMac-TT

obtain much better results than HaLRTC and tSVD, some block-artifacts are created on the restored

images. As a comparison, the recovered results by the proposed method are visually better than those

of the compared methods. From the zoom-in regions of recovered images, we observe that NL-TT can

efficiently keep the details and smoothness of images and reduce the block-artifacts compared with

SiLRTC-TT and TMac-TT.

Table 1 lists the PSNR and SSIM values of the restored images by all compared methods on different

SRs. The highest results for each quality index are labeled in bold. Fig. 5 shows the recovery PSNR

and SSIM curves by all compared methods with SRs tested from 0.05 to 0.6. It is observed that for

different SRs, the proposed method achieves the highest PSNR and SSIM values.

Structural missing pixels. We test five kinds of structural missing pixels, i.e., missing random

curves for image house, missing random vertical and horizontal slices for image facade, missing texts

for image sailboat, and missing regular and random blacks for images barbara and peppers, respectively.

Fig. 6 shows the experimental results obtained by different methods. Enlarged subregions are

marked by a blue box at the bottom left corner of each image. HaLRTC and tSVD fail to recover

the missing slices. There are “shadows” retained in the images recovered by HaLRTC, tSVD, and
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(a) Observed (b) HaLRTC (c) tSVD (d) SiLRTC-TT (e) TMac-TT (f) NL-TT (g) Original

Figure 6: The results of testing color images with structural missing entries recovered by different methods.
From left to right: (a) the observed image, the results by (b) HaLRTC, (c) tSVD, (d) SiLRTC-TT, (e) TMac-
TT, (f) NL-TT, and (g) the original image.

Table 2: The PSNR and SSIM values obtained by HaLRTC, tSVD, SiLRTC-TT, TMac-TT and NL-TT
for color image data with structural missing entries.

Method HaLRTC tSVD SiLRTC-TT TMac-TT NL-TT

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

house 36.44 0.9707 36.14 0.9681 38.52 0.9793 38.03 0.9740 45.34 0.9906

facade 12.95 0.5681 12.95 0.5681 28.14 0.9062 27.50 0.8947 29.60 0.9357

sailboat 26.49 0.8700 26.69 0.8696 26.53 0.8838 26.40 0.8995 27.86 0.9370

barbara 32.44 0.9580 32.44 0.9579 33.99 0.9681 33.29 0.9654 37.56 0.9867

peppers 31.64 0.9595 31.53 0.9551 32.59 0.9676 32.77 0.9651 36.33 0.9862

Average 27.99 0.8653 27.95 0.8638 31.95 0.9410 31.60 0.9397 35.34 0.9672

SiLRTC-TT. TMac-TT fills the missing areas, but causes block-artifacts on the restored images. By

contrast, the proposed method recovers most of missing areas without outlines and performs well in

local details. Table 2 shows the PSNR and SSIM values obtained for all completion methods, which

demonstrates that the proposed method performs better than four well-known methods in terms of the

PSNR and SSIM measures. It is worth noting that our method achieves nearly 3.4 dB improvement

than the second-best results in average.
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6.2 MSIs

We test the CAVE MSI database 1, which contains 32 real-world scenes, each of which has 31 spectral

bands with 512 × 512 pixels for each band. We resize the spatial resolution 512 × 512 to 256 × 256,

and select 11 bands for our experiments. For MSIs, we only test the random sampling case. The SRs

are set to be 0.05, 0.1, and 0.2, respectively.

(a) Observed (b) HaLRTC (c) tSVD (d) SiLRTC-TT (e) TMac-TT (f) NL-TT (g) Original

Figure 7: The results of one band of testing MSIs with SR = 0.1 recovered by different methods. From left
to right: (a) the observed image, the results by (b) HaLRTC, (c) tSVD, (d) SiLRTC-TT, (e) TMac-TT, (f)
NL-TT, and (g) the original image.

2 4 6 8 10
25

30

35

40

Band number

P
S

N
R

 (
d
B

)

 

 

HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT

2 4 6 8 10

26

30

34

38

42

Band number

P
S

N
R

 (
d

B
)

 

 
HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT

2 4 6 8 10
30

34

38

42

Band number

P
S

N
R

 (
d
B

)

 

 

HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT

2 4 6 8 10
0.85

0.9

0.95

1

Band number

S
S

IM

 

 

HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT

2 4 6 8 10

0.85

0.9

0.95

1

Band number

S
S

IM

 

 

HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT

2 4 6 8 10
0.92

0.96

1

Band number

S
S

IM

 

 

HaLRTC tSVD SiLRTC−TT TMac−TT NL−TT
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Figure 8: The PSNR and SSIM values of all bands of the reconstructed MSIs with SR = 0.2 recovered by
different methods.

1http://www1.cs.columbia.edu/CAVE/databases/multispectral
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Figure 9: Comparison of the PSNR values by different methods on the dataset CAVE with SR = 0.1.

Table 3: The average PSNR and SSIM values obtained by HaLRTC, tSVD, SiLRTC-TT, TMac-TT and
NL-TT for MSIs with different SRs.

Image
SR 0.05 0.1 0.2

Method PSNR SSIM PSNR SSIM PSNR SSIM

toy

HaLRTC 20.14 0.6519 23.99 0.7790 28.91 0.8994

tSVD 25.89 0.7680 30.34 0.8844 36.57 0.9602

SiLRTC-TT 22.36 0.7138 25.81 0.8392 30.44 0.9433

TMac-TT 27.28 0.8329 32.37 0.9317 35.74 0.9669

NL-TT 29.58 0.9243 34.44 0.9730 38.72 0.9899

feathers

HaLRTC 20.66 0.6422 24.26 0.7720 28.81 0.8876

tSVD 25.15 0.6886 29.29 0.8266 34.82 0.9265

SiLRTC-TT 22.86 0.7196 26.32 0.8417 31.11 0.9411

TMac-TT 27.29 0.7611 32.12 0.9190 36.63 0.9631

NL-TT 29.61 0.9102 34.76 0.9699 39.56 0.9879

superballs

HaLRTC 23.28 0.7661 28.63 0.8621 34.10 0.9426

tSVD 28.24 0.7636 32.39 0.8663 38.20 0.9564

SiLRTC-TT 26.27 0.8290 29.79 0.9087 34.03 0.9651

TMac-TT 29.97 0.8343 33.90 0.9346 40.19 0.9803

NL-TT 32.93 0.9507 37.25 0.9812 42.67 0.9939

We show one band recovered results in toy, feathers, and superballs by different methods in Fig.

7 and display the PSNR and SSIM values of each band with SR = 0.2 in Fig. 8. From Fig. 7, the
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proposed method achieves the best results in preserving the textures and details. From Fig. 8, we

see that our method performs higher PSNR and SSIM values than other methods for all bands. Fig.

9 lists the comparison of the PSNR values on all 32 MSIs. Table 3 lists the average performance

(over different SRs) of all methods. From these quantitative comparisons, we observe that our method

outperforms other competing methods with respect to PSNR and SSIM.

(a) Observed (b) HaLRTC (c) tSVD (d) SiLRTC-TT (e) TMac-TT (f) NL-TT (g) Original

Figure 10: The results of two frames of testing color videos recovered by different methods. The first (third)
and second (fourth) rows: the results of color videos bus (mobile), respectively. From left to right: (a) the
observed image, the results by (b) HaLRTC, (c) tSVD, (d) SiLRTC-TT, (e) TMac-TT, (f) NL-TT, and (g)
the original image.

6.3 Color videos

In this subsection, we test the proposed method on two color videos bus and mobile 2 with random

sampling. The size of testing videos is 243× 256× 3× 27. The SR is set as 0.1 in this task.

Fig. 10 shows the visual results by using different methods. Obviously, the results by HaLRTC

and SiLRTC-TT appear dark and have color distortion, the results by tSVD have undesirable thorns,

and the results by our method visually outperforms TMac-TT in keeping smoothness and details of

recovered images. The PSNR and SSIM values of each frame of two reconstructed color videos are

plotted in Fig. 11. We note that the PSNR and SSIM values of each frame recovered by the proposed

method are higher than all compared methods.

2https://media.xiph.org/video/derf/
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Figure 11: The PSNR and SSIM values of all frames of color videos recovered by different methods.

7 Discussions

In this section, we test the effects of parameters of the proposed NL-TT method and show the numerical

convergence of the ADMM solver. All tests in this section are based on image lena with SR = 0.3

tube sampling and image house with missing curves as examples.
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Figure 12: The PSNR and SSIM curves as the function of the number of the similar cube h. (a) change in
the PSNR value, (b) change in the SSIM value.
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Figure 13: The PSNR and SSIM curves as the function of the number of the cube size s. (a) change in the
PSNR value, (b) change in the SSIM value.

Effect of the number of the similar cube h. In our algorithm, the number of the similar cube

h controls the number similar cubes of the grouped tensor. In Fig. 12, we show the experimental

results of PSNR and SSIM values as the function of the number h from 16 to 56 with step 2. From

Fig. 12, we can observe that when the number of similar cubes is small, the PSNR values increase

extremely fast. Then the growing rate of the curve becomes relatively slow. The highest PSNR and

SSIM values are achieved around h = 42. Thus, we empirically choose the number of the similar cube

between 30 to 50 with the increment 4.

Effect of the cube size s. The cube size s controls the number of patterns in an image cube. Fig.

13 provides the completed results of PSNR and SSIM values as the function of the size s from 4 to 24

with step 2. From Fig. 13, one can observe that a too small s performs poorly. One possible reason

is that small-size cubes do not contain enough well-patterned image texture. The highest PSNR and

SSIM values are achieved around s = 16. Therefore, we empirically set the parameter s ∈ [10, 20] with

the increment 2.

Numerical convergence. We empirically demonstrate the convergence of the proposed algorithm.

Fig. 14 displays the relative error value (‖X l+1
p −X lp‖F /‖X lp‖F ) and the objective function value verse

the iteration number for several restored groups. We observe that as the iteration number increases,

the relative errors converge to zero and the objective function values tend to flat, which empirically

indicates the convergence of the proposed algorithm.

8 Conclusion

In this paper, we propose a new nonlocal TT rank-based tensor completion method by exploring the

NSS prior of tensor data. After block-matching, each group of selected j-th order cubes are stacked

together into a (j+1)-th order data. We apply the low-TT-rank constraint on the grouped tensor, which

can simultaneously learn the correlation along the spatial, nonlocal, and temporal/spectral modes.

Moreover, we establish a perturbation analysis for the TT low-rankness of groups consisting of similar

cubes. An efficient ADMM-based algorithm is developed to solve the proposed model. Experiments

on color images, MSIs data, and color videos demonstrate the effectiveness of the proposed method.
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Figure 14: The relative error and objective function values curve versus the iteration number for grouped
tubes. (a) grouped tensors, (b) change in the relative error value, (c) change in the objective function value.

In the future work, we will try to adaptively choose the penalty parameter of each group to enhance

the performance and extend the proposed method to other image processing tasks, such as remotely

sensed images recovery [9, 15, 21], rain streaks removal [25, 47].

Appendices

A Proof of Proposition 1

Proof. We denote the objective function of (5) by E(X ). It is clear that E(X ) is convex, proper, and

continuous. According to the Weierstrass’ theorem [3], it remains only to show the coercivity of E(X ),

i.e., for every sequence {X b} such that ‖X b‖F → ∞, we have limb→∞E(X b) = ∞. We prove it by

contradiction. Assume that there exists a subsequence of {X b} (also denoted as {X b}) that {E(X b)}
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is bounded, we have that
∑j−1
k=1 αk‖X[k]‖∗ is bounded. Due to the equivalence of norms, we get that

{‖X b‖F } is bounded. Then {X b} is a bounded sequence, which is contradictory with the assumption.

So the model (5) has at least one minimizer.

B Proof of Theorems 1, 2, 3, and 4

Proof of Theorem 1

Proof. Note that

‖E‖2F = ‖X − Y‖2F =

s∑
i2=1

n3∑
i3=1

h∑
i4=1

‖X (:, i2, i3, i4)− x‖22

≤ sn3hε
2.

Therefore, ‖E‖F ≤
√
sn3hε. This completes the proof.

Proof of Theorem 2

Proof. Note that

‖Ê‖2F = ‖X − Ŷ‖2F =

h∑
i4=1

‖X (:, :, :, i4)− X̂‖2F ≤ hε̂2.

Therefore, ‖Ê‖F ≤
√
hε̂.

Proof of Theorem 3

Proof. From the definition of Ẽ , we get that

‖Ẽ‖2F = ‖X − Ỹ‖2F

=

h∑
i4=r+1

‖X (:, :, :, i4)−X (:, :, :, 1)‖2F

≤ (h− r)ε̃2.

Hence ‖Ẽ‖F ≤
√
h− rε̃.

Proof of Theorem 4
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Proof. From the definition of s(X ), we get that

|s(X )− s(Y)| =
∣∣∣∣ 3∑
k=1

αk(‖X[k]‖∗ − ‖Y[k]‖∗)
∣∣∣∣

=

∣∣∣∣ 3∑
k=1

αk

(∑
jk

(
σjk((Y+E)[k])− σjk(Y[k])

))∣∣∣∣
≤

3∑
k=1

αk

(∑
jk

∣∣σjk((Y+E)[k])− σjk(Y[k])
∣∣)

≤
3∑
k=1

αk

(∑
jk

(
‖E[k]‖F

))
= c‖E‖F .

Therefore, |s(X )− s(Y)| ≤ c‖E‖F .
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