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a b s t r a c t 

Although the extensive research on Gaussian noise removal, few works consider the 

Cauchy noise removal problem. In this paper, we propose a novel group-based low-rank 

method for Cauchy noise removal. By exploiting the nonlocal self-similarity of natural im- 

ages, we consider a group of similar patches as an approximate low-rank matrix, and for- 

mulate the denoising of each group as a low-rank matrix recovery problem. Meanwhile, we 

develop the alternating direction method of multipliers algorithm to solve the proposed 

nonconvex model with guaranteed convergence. Experiments illustrate that our method 

has superior performance over the state-of-the-art methods in terms of both visual and 

quantitative measures. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

As a fundamental problem in image processing, image denosing is an important preprocessing step of many image

restoration tasks, such as super-resolution [45] , inpainting [18] , and deblurring [23] . Most existing image denoising tech-

niques assume that images are corrupted by additive Gaussian noise, but there are many non-Gaussian noises in practical

applications, such as impulsive noise [6] and multiplicative noise [14] . In particular, the Cauchy noise, as a kind of α-stable

noise, widely arises in many real-world data, such as underwater acoustic signals [2] , atmospheric radio signals [39] , and

radar clutter [24] . Recently, the problem of Cauchy noise removal has attracted much attention in image processing [35,38] .

Mathematically, the observed image is modeled as 

G noi = F ori + N noi , (1)

where G noi ∈ R 

m 1 ×m 2 is the noisy image, F ori is the original image, and N noi is the noise following the Cauchy distribution

whose probability density function is 

p(x ) = 

γ

π(γ 2 + (x − δ) 2 ) 
, 

where δ is the localization parameter corresponding to the median of the distribution and γ > 0 is the scale parameter

deciding the spread of the distribution around δ. Without loss of generality, in the following discussion, we consider δ = 0 . 
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Image denoising is a typical inverse problem; stable solution processes usually rely on the prior knowledge of the un-

derlying image. One popular and efficient prior knowledge is piecewise smoothness, which is usually characterized by total

variation (TV) [1,11,37,41,43,47,53] , i.e., 

‖ F ‖ T V = ‖∇ F ‖ 2 = 

∑ 

1 ≤p≤m 1 , 1 ≤q ≤m 2 

√ | (∇ x F ) p,q | 2 + | (∇ y F ) p,q | 2 

with 

(∇ x F ) p,q = 

{
F p+1 ,q − F p,q , if p < m 1 , 

F 1 ,q − F m 1 ,q , if p = m 1 , 

and 

(∇ y F ) p,q = 

{
F p,q +1 − F p,q , if q < m 2 , 

F p, 1 − F p,m 2 
, if q = m 2 , 

for p = 1 , 2 , . . . , m 1 and q = 1 , 2 , . . . , m 2 , where F p,q denotes ( p, q )th pixel of the image F . Sciacchitano et al. [38] proposed

the following TV-based Cauchy noise removal model: 

arg min 

F 
ori 

λ

2 

〈 log (γ 2 + ( F ori − G noi ) 
2 ) , 1 〉 + ‖ F ori ‖ T V , (2) 

where λ > 0 is the regularization parameter controlling the balance between the fidelity term and the regularization term.

Since the fidelity term derived from Cauchy distribution is non-convex, the solution of (2) depends on the initial guess. To

overcome this difficulty, the authors [38] added a quadratic penalty term 

arg min 

F 
ori 

λ

2 

(〈 log (γ 2 + ( F ori − G noi ) 
2 ) , 1 〉 + μ‖ F ori − F 0 ‖ 

2 
F 

)
+ ‖ F ori ‖ T V , (3)

where μ > 0 is a penalty parameter, F 0 is the image obtained by applying a median filter on G noi . The authors proved that

(3) is strictly convex, if 8 μγ 2 ≥ 1. However, the median filter usually produces poor results, so pushing F ori close to F 0 may 

lower the denoising performance. To overcome this drawback, Mei et al. [35] removed the quadratic term ‖ F ori − F 0 ‖ 2 F and

applied the alternating direction method of multiplies (ADMM) to solve the nonconvex model (2) with guaranteed conver-

gence. Experiments in [35] illustrated that the superior performance of their method over the convex method [38] in details

preservation. The above TV-based methods can preserve sharp image edges, but also produces the undesirable staircase ef-

fects [3,7,19,52] . For alleviating staircase effects, Ding et al. [12] proposed a method based on TV with overlapping group

sparsity for recovering blurred images corrupted by Cauchy noise. In [25] , Laus et al. proposed a generalized myriad filter to

estimate the parameters of the Cauchy distribution and designed a nonlocal myriad filter for removing Cauchy noise. 

In recent years, low-rankness has been emerged as an important prior knowledge of natural images. And methods based

on low-rank matrix recovery (LRMR) have been widely studied in image processing [8,29,30,36] . LRMR-based methods aim

at recovering the underlying low-rank matrix by minimizing the matrix rank. Since the direct rank minimization is NP-hard,

this optimization problem is generally relaxed by the nuclear norm minimization [5] 

ˆ X = arg min 

X 

λ

2 

‖ Y − X ‖ 

2 
F + ‖ X ‖ ∗, (4) 

where ‖ X ‖ ∗ = 

∑ 

r (σr ( X )) is the nuclear norm of matrix X , σr ( X ) is the r th largest singular value. Eq. (4) has a closed-form

solution by the singular value thresholding (SVT) [5] operator of the observation matrix 

ˆ X = U S 1 
λ
(�) V 

T 
, (5) 

where Y = U �V 

T is the singular value decomposition of Y and S 1 
λ
(�) = diag ( max (σr − 1 

λ
, 0)) . Zhang et al. [48] proposed a

new LRMR-based hyperspectral images (HSI) mixed noise removal method, which applied the “Go Decomposition” on the

matrix ordered by a patch of HSI, exploring the low-rankness of a clean HSI patch. 

Another significant image prior is nonlocal self-similarity (NSS) [9,10,22] , which depicts the redundancy of similar image

structures. Inspired by the success of nonlocal means denoising filter [4] , a number of NSS-based regularization methods

have been emerged [15,31,32,50] . Dabov et al. [9] proposed the block matching and 3-D filtering (BM3D) denoising method,

which performed a 3-D transform-domain collaborative filtering on groups of similar patches, exploiting simultaneously the

sparsity and NSS priors. Mairal et al. [34] combined the NSS prior and sparse coding by jointly decomposing groups of

similar signals on subsets of the learned dictionary for image demosaicking and denoising tasks. 

Recently, as a combination of low-rankness and NSS, the group-based low-rank (GBLR) prior has achieved great success

in image restoration [17,20,27,28,33] . The basic idea is that a matrix consisting with vectorized similar image patches can be

approximated by a low-rank matrix. Dong [13] showed an intrinsic relationship between simultaneous sparse coding and

low-rank approximation, and presented a low-rank approach toward modeling NSS in images. Zhang et al. [49] proposed a
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Fig. 1. Flowchart of the proposed denoising method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group-based sparse representation method for image restoration, which exploitd the group composed of nonlocal patches

with similar structures as the basic unit of sparse representation. 

In this paper, we propose a novel GBLR method exploiting the NSS of images for Cauchy noise removal. We consider

the group, i.e., a 2-D matrix consisting of similar image patches, as the basic unit of noise removal. The proposed method

has three steps, grouping via stack similar images patches, denoising each group, aggregating the restored image via the

denoised groups. The flowchart of the proposed method is illustrated in Fig. 1 . Experiments show that our method achieves

better denoising performance than compared methods. 

In summary, our contributions are as follows: 

• we propose a novel GBLR Cauchy noise removal method, where the denoising of each group is formulated as a LRMR

problem; 

• we develop an efficient algorithm under the framework of ADMM to solve the proposed model with guaranteed con-

vergence. 

The outline of this paper is as follows. Section 2 introduces the proposed GBLR method in details. Section 3 presents the

denoising algorithm. Section 4 gives the experimental evaluation of the proposed method. Section 5 discusses the effects of

parameters and the convergence behavior of the proposed algorithm. Finally, Section 6 summarizes the paper. 

2. The proposed method 

The proposed GBLR method involves three steps, which are presented in Algorithm 1 . Below we give the details of each

step. 

Algorithm 1 GBLR method for Cauchy noise removal. 

Step 1: Grouping : For each reference patch of the input image, stack the similar image patches 

into a group. 

Step 2: Denoising : For each group, obtain the denoised group by solving a GBLR model. 

Step 3: Aggregation : Compute the final denoised image by averaging all denoised groups. 

In Step 1, we construct groups via block-matching. We use block-matching [9] to collect a group of image patches con-

taining similar image structures. We employ the distance suggested in [25] to measure the similarity between two patches

extracted from the noisy image. A smaller distance indicates higher similarity. Specifically, we initialize the locations of

groups by performing block-matching on the noisy image, and update the grouping results using the current restored image

to improve the accuracy of block-matching. This update occurs only once. Overlapped patches are allowed to avoid possible

block effects. The grouping process is illustrated in Fig. 2 . 

A mathematical formulation of grouping is given as follows. For each reference patch G ref ∈ R 

s ×s extracted from the

noisy image G noi , we find the locations of its similar patches within a window of size s win × s win . To measure the similarity

between two patches G 1 and G 2 ∈ R 

s ×s degraded by Cauchy noise, we use the following distance [25] derived from the noise

distribution: 

d( G 1 , G 2 ) = 

s ∑ 

i =1 

s ∑ 

j=1 

log 

( 

1 + 

(
G 1(i, j) − G 2(i, j) 

2 γ

)2 
) 

, (6)

where G 1(i, j) and G 2(i, j) are the ( i, j )th pixels in the patches G 1 and G 2 , respectively. Assuming that t patches { G n } t n =1 
similar

to G ref are found in G noi . Then by concatenating all columns of the patch G n into a vector g n ∈ R 

s 2 and stacking all vectors
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Fig. 2. Illustration of grouping via block-matching. The reference patch and matched patches are denoted by red and blur boxes, respectively. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

in order, we found a noisy matrix G ∈ R 

s 2 ×t as follows: 

G = (g 1 , g 2 , · · · , g t ) . (7) 

In Step 2, we denoise each group by solving a GBLR model. We consider the degraded model in the unit of group 

G = F + N , (8) 

where G denotes a group of similar patches from the noisy image G noi , F denotes the corresponding clean group from the

clean image F ori , and N denotes the noise embedded in G . 

Next, we provide a mathematical justification for the proposed model from the perspective of maximum a posteriori

(MAP) estimator [35,38] . 

We assume that N follows the Cauchy distribution with δ = 0 and consider G ( x ) and F ( x ) as random variables. In order to

recover F from G , we maximize the conditional probability P ( F | G ) using the MAP estimator. Based on Bayes’ rule, we have 

arg max 
F 

P (F | G ) ⇐⇒ arg max 
F 

P (G | F ) P (F ) 

P (G ) 

⇐⇒ arg min 

F 

− log P (G | F ) − log P (F ) 

⇐⇒ arg min 

F 

−
∑ 

x 

log P (G (x ) | F (x )) − log P (F ) , (9) 

First, according to the assumptions, we have that 

P (G (x ) | F (x )) = 

γ

π((G (x ) − F (x )) 2 + γ 2 ) 
. (10) 

Second, to exploit the similarity between selected patches of the group, we impose a low-rank prior on F , i.e., P (F ) ∼
exp ( tr ( 

√ 

F T F )) , where tr denotes the trace and 

√ 

F T F denotes a positive semidefinite matrix E such that EE = F T F . The

low-rankness of F can also be seen from Fig. 3 . 

Then, the proposed model for denoising each group is 

arg min 

F 

λ

2 

〈 log (γ 2 + (G − F ) 2 ) , 1 〉 + ‖ F ‖ ∗, (11)

where λ is the regularization parameter controlling the balance between the fidelity term and the regularization term, γ is

the scale parameter, 1 ∈ R 

s 2 ×t is a matrix whose elements equal to 1, and 〈 · , · 〉 denotes the standard inner product. 

In Step 3, we aggregate the final denoised image. In the proposed method, since the patches are overlapped and one

patch can appear in more than one group, each pixel may be covered by several denoised patches. The final value for each

pixel is obtained by first returning denoised grouped matrices to their original positions and then taking the average of all

the covered patches at this pixel. 

3. Numerical algorithm 

This section is divided into three parts. First, we review the framework of ADMM for nonconvex and nonsmooth prob-

lems. Second, we present the proposed algorithm in details. Third, we demonstrate the convergence of the proposed

algorithm. 

3.1. ADMM for nonconvex and nonsmooth problems 

Before applying ADMM to solve the nonconvex model (11) , we review its framework and convergence in nonconvex

nonsmooth optimization [40] . 



M. Ding, T.-Z. Huang and T.-H. Ma et al. / Applied Mathematics and Computation 372 (2020) 124971 5 

Fig. 3. Group-based low-rank property of images Barbara (left) and Wall (right). Top row: original images and their degraded images. Bottom row: plots 

of singular values of the clean and noisy group extracted from the original and the degraded images. Each group is of size 36 × 60 containing 60 patches 

of size 6 × 6. One can see that the singular values of the clean group are much smaller and sparser than those of the noisy group. 

 

 

 

 

 

 

 

 

 

Wang et al. [40] considers the following optimization problem with a linear constraint: 

min 

x,y 
F(x ) + H(y ) 

s.t. P x + Q y = 0 , (12)

where F(x ) is a continuous, proper, possibly nonsmooth and nonconvex function, H(y ) is a proper, differentiable and possi-

bly nonconvex function, and x ∈ R 

n 1 , y ∈ R 

n 2 are variables with the corresponding coefficients P ∈ R 

l×n 1 , Q ∈ R 

l×n 2 , respec-

tively. By introducing a Lagrangian multiplier z ∈ R 

l for the linear constraint, we have the following augmented Lagrangian

function: 

L β (x, y, z) = F(x ) + H(y ) + 〈 z, P x + Q y 〉 + 

β

2 

‖ P x + Q y ‖ 

2 
2 , 

where β > 0 is a penalty parameter. 

ADMM [16,44] solves (12) in the following iterative way: ⎧ ⎪ ⎨ 

⎪ ⎩ 

x d+1 = arg min x L (x, y d , z d ) , 

y d+1 = arg min y L (x d+1 , y, z d ) , 

z d+1 = z d + β( P x d+1 + Q y d+1 ) . 

(13)

The following lemma [40] establishes the convergence result of ADMM under the nonconvex and nonsmooth case. 

Lemma 1. Suppose that the following assumptions A1–A5 hold, for any sufficiently large β , then the sequence generated by

(13) starting from any initialization has at least one limit point, and each limit point is a stationary point of the augmented

Lagrangian function. 

A1 ( coercivity ) Let D = { (x, y ) ∈ R 

n 1 + n 2 : P x + Q y = 0 } be the nonempty feasible set and F(x ) + H(y ) is coercive over D; 

A2 ( feasibility ) Im ( P ) ⊆ Im ( Q ) , where Im ( · ) denotes the image of a matrix; 

A3 ( Lipschitz sub-minimization paths ) 

(a) For any x, there exists a Lipschitz continuous map H : Im ( Q ) → R 

l obeying H(u ) = arg min y {F(x ) + H(y ) : Q y = u } , 
(b) For any y, there exists a Lipschitz continuous map H : Im ( P ) → R 

l obeying F (u ) = arg min x {F(x ) + H(y ) : P x = u } ; 
A4 ( objective- Fregularity ) F is lower semi-continuous or sup {‖ f‖ : x ∈ S, f ∈ ∂F(x ) } is bound for any bound set S; 

A5 ( objective- Hregularity ) H is Lipschitz differentiable with the constraint L ∇H 

> 0 . 

3.2. Proposed algorithm 

We adopt ADMM to minimize the proposed objective function. By introducing an auxiliary variable A , we get the equiv-

alent constrained problem 

arg min 

F , A 

λ

2 

〈 log (γ 2 + (G − A ) 2 ) , 1 〉 + ‖ F ‖ ∗

s.t. F = A . (14)
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The augmented Lagrangian function of (14) is defined as 

L β (F , A , B ) = 

λ

2 

〈 log (γ 2 + (G − A ) 2 ) , 1 〉 + ‖ F ‖ ∗ + 〈 F − A , B 〉 + 

β

2 

‖ F − A ‖ 

2 
F , (15)

where B is the Lagrangian multiplier of the linear constraint and β > 0 is the penalty parameter. According to (13) , the

iterative scheme for solving (14) is as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

F d+1 = arg min F L β (F , A 

d , B 

d ) , 

A 

d+1 = arg min A L β (F d+1 , A , B 

d ) , 

B 

d+1 = B 

d + β(F d+1 − A 

d+1 ) . 

(16) 

We give the details for solving the first two subproblems in (16) . 

1. F -subproblem 

F d+1 = arg min 

F 

β

2 

∥∥∥∥F − A 

d + 

B 

d 

β

∥∥∥∥
2 

F 

+ ‖ F ‖ ∗. (17) 

Using SVT, F d+1 has the following closed-form solution: 

F d+1 = U 

d S 1 
β
(�d )(V 

d ) T , (18) 

where A 

d − B d 

β
= U 

d �d (V 

d ) T and S 1 
β
(�d ) = diag( max (σ d 

r − 1 
β

, 0)) . 

2. A -subproblem 

A 

d+1 = arg min 

A 

λ

2 

〈 log (γ 2 + (G − A ) 2 ) , 1 〉 + 

β

2 

∥∥∥∥F d+1 − A + 

B 

d 

β

∥∥∥∥
2 

F 

. (19)

Given fixed G , F d+1 , and B 

d , the optimal A consists of solving s 2 t one-variable minimization problems 

arg min 

A m,n 

λ

2 

log 
(
γ 2 + (G m,n − A m,n ) 

2 
)

+ 

β

2 

(
F d+1 

m,n − A m,n + 

B 

d 
m,n 

β

)2 

, (20) 

where A m,n , G m,n , F d+1 
m,n , and B 

d 
m,n are the ( m, n )th pixels in A, G , F d+1 , and B 

d , respectively, and m = 1 , . . . , s 2 , n =
1 , . . . , t . 

Let 

W (A m,n ) = 

λ

2 

log 
(
γ 2 + (G m,n − A m,n ) 

2 
)

+ 

β

2 

(
F d+1 

m,n − A m,n + 

B 

d 
m,n 

β

)2 

, (21) 

then the optimality condition for A -subproblem is given by 

W 

′ (A m,n ) = 0 , (22) 

where W 

′ is the first order derivative of W . As there exists the second order derivative for (21) , we get the solution

of (22) by the Newton method 

A 

d+1 ,h +1 
m,n = A 

d+1 ,h 
m,n − W 

′ (A 

d+1 ,h 
m,n ) 

W 

′′ (A 

d+1 ,h 
m,n ) 

, (23) 

where W 

′′ is the second order derivative of W . A 

d+1 ,h +1 
m,n is the result of the (h + 1) th iteration in the (d + 1) th outer

iteration. In the proposed method, we initialize the Newton algorithm using the current G m,n . However, we have not

yet succeed in establishing a rigorous convergence of the Newton method, since it is difficult to check the technical

conditions for the initialization point, which is changing during iteration. We empirically find that the Newton method

rapidly approaches the minimizer to a high accuracy in few iterations. 

The whole denoised algorithm is summarized in Algorithm 2 . 

3.3. Convergence 

In the following, we study the convergence of the proposed algorithm. Inspired by [40] , as a special case of (12) , we have

the following convergence result for Algorithm 2 . 

Theorem 1. For sufficiently large β , the sequence ( F d , A 

d , B 

d ) generated by Algorithm 2 has limit points and all of its limit points

are stationary points of the augmented Lagrangian L β . 
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Algorithm 2 Cauchy Noise Removal using Group-based Low-rankness Image Prior. 

Input: noisy image G noi , parameters λ, β , s , t , and s win , maximum iteration d max , and relative error ε. 

Initialization: Perform grouping on G noi to get each group G . 

Out loop: For each group, do 

Initialization: set A 

0 = G , B 

0 = 0 . 

Inner loop: while d ≤ d max or 
‖ F d+1 −F d ‖ 2 

F 

‖ F d ‖ 2 
F 

≥ ε, do 

1: solve F d+1 via (18). 

2: solve A 

d+1 via Newton method. The details are omitted. 

3: update B 

d+1 by (16). 

End Inner loop , and output F d+1 . 

End Out loop , and output denoised groups. 

Output: aggregate the restored image ˜ F via denoised groups. 

 

 

 

 

 

 

 

 

 

Proof. We rewrite the proposed model (11) as 

arg min 

F , A 
F(F ) + H(A ) 

s.t. F − A = 0 , 

where F(F ) = ‖ F ‖ ∗, H(A ) = 

λ
2 〈 log (γ 2 + (G − A ) 2 ) , 1 〉 . It is clear that our model fits the framework of (12) . 

Now we check A1–A5. A1 holds because of the coercivity of F(F ) + H(A ) . A2 and A3 hold because both P and Q are

identity matrices. A4 holds because nuclear norm is lower semi-continuous. Hence, it remains to verify A5 that H(A ) =
λ
2 〈 log (γ 2 + (G − A ) 2 ) , 1 〉 is Lipschitz differentiable. 

Since H is smooth, we can calculate its second derivative 

∂ 2 A H = λ
γ 2 − (G − A ) 2 

(γ 2 + (G − A ) 2 ) 2 
≤ λ

γ 2 
, 

and L ∇H 

= 

λ
γ 2 > 0 is Lipschitz constant for ∇H. This verifies A5 and completes the proof. �

4. Numerical experiments 

In this section, several numerical experiments are presented to demonstrate the performance of the proposed method in

Cauchy noise removal. All numerical experiments are performed on Windows 10 64-bit and MATLAB R2012a running on a

desktop equipped with an Intel(R) Core(TM) i7-6700M CPU with 3.40 GHz and 8 GB of RAM. 

Fig. 4 shows six 256-by-256 gray-scale testing images with an intensity range [0, 255]. We simulate a Cauchy noise by the

ratio of two independent standard normal variables, and generate the noisy image G noi by using the following degradation: 

G noi = F ori + γ
η1 

η2 

, 

where γ > 0 is the noise level, η1 and η2 are two independent random variables following Gaussian distribution with zero

mean and unit variance. 

We compare the proposed method (“GBLR” for short) with four compared methods, including the convex variational

method [38] (“CTV” for short), the non-convex variational method [35] (“NTV” for short), the nonlocal generalized myriad

filter-based method [25] (“NGMF” for short), and the generalized multivariate myriad filter-based method [26] (“GMMF” for

short). 
Fig. 4. Original images. 
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Table 1 

The PSNR and SSIM values obtained by different methods for testing images with γ = 5 . 

Image 

PSNR SSIM 

Noisy CTV NTV NGMF GMMF GBLR Noisy CTV NTV NGMF GMMF GBLR 

Barbara 19.23 23.51 26.94 29.53 29.29 31.20 0.4797 0.7463 0.8404 0.8764 0.8751 0.8964 

Cameraman 19.23 26.73 28.80 28.78 28.14 29.77 0.3604 0.8246 0.8431 0.8224 0.8136 0.8647 

Wall 19.24 32.10 32.51 32.30 32.15 33.48 0.2954 0.8739 0.8710 0.8372 0.8361 0.9001 

Parrot 19.20 30.36 30.93 31.96 31.43 32.69 0.3122 0.8986 0.8942 0.8565 0.8559 0.9034 

Bamboo 19.17 23.88 25.78 26.90 27.12 28.15 0.7942 0.9148 0.9414 0.9479 0.9518 0.9603 

Computer 19.22 34.03 33.75 33.84 33.90 36.06 0.2765 0.9291 0.9228 0.8679 0.8724 0.9482 

Average 19.22 28.44 29.79 30.55 30.34 31.89 0.4197 0.8646 0.8855 0.8680 0.8675 0.9122 

Fig. 5. Restored images by different methods with γ = 5 . (a) noisy image, the results of (b) CT V, (c) NT V, (d) NGMF, (e) GMMF, and (f) GBLR. 
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Table 2 

The PSNR and SSIM values obtained by different methods for testing images with γ = 10 . 

Image 

PSNR SSIM 

Noisy CTV NTV NGMF GMMF GBLR Noisy CTV NTV NGMF GMMF GBLR 

Barbara 16.31 23.05 24.56 26.58 26.19 28.29 0.3422 0.6942 0.7525 0.7999 0.7901 0.8414 

Cameraman 16.33 25.97 26.88 26.60 25.14 27.49 0.2470 0.7714 0.7860 0.6550 0.7368 0.8034 

Wall 16.35 30.40 30.35 29.96 29.20 31.16 0.1889 0.8430 0.8173 0.7989 0.7770 0.8518 

Parrot 16.31 28.87 28.99 28.88 28.00 29.82 0.2008 0.8510 0.8557 0.8111 0.7943 0.8716 

Bamboo 16.28 22.61 23.20 24.86 23.04 25.18 0.6820 0.8843 0.8976 0.9163 0.8874 0.9264 

Computer 16.31 31.82 31.56 31.02 30.45 32.89 0.1684 0.8950 0.8752 0.8278 0.8100 0.9054 

Average 16.32 27.12 27.59 27.98 27.00 29.14 0.3049 0.8232 0.8307 0.8015 0.7993 0.8667 

Fig. 6. Restored images by different methods with γ = 10 . (a) noisy image, the results of (b) CT V, (c) NT V, (d) NGMF, (e) GMMF, and (f) GBLR. 
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Fig. 7. Zoomed vision of restored images in Fig. 5 . (a) original image, the results of (b) CT V, (c) NT V, (d) NGMF, (e) GMMF, and (f) GBLR. 

Fig. 8. Zoomed vision of restored images in Fig. 6 . (a) original image, the results of (b) CT V, (c) NT V, (d) NGMF, (e) GMMF, and (f) GBLR. 

 
Quantitative indices. For quantitative comparison, the peak signal-to-noise ratio (PSNR) and the structural similarity

index (SSIM) [42] are used to measure the quality of the restored image. They are defined as follows: 

PSNR = 10 log 10 

(
255 

2 

1 
m 1 m 2 

‖ F ori − ˜ F ‖ 
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F 

)
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SSIM = 

2 μF 
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Fig. 9. Illustration of the ability of the proposed method to keep the smoothness. The intensities of a row of the recovered Wall images with γ = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where F ori and 

˜ F are the original image and the restored image, respectively, μF 
ori 

and μ˜ F 
are the mean values of F ori and

˜ F , σ 2 
F 
ori 

and σ 2 
˜ F 

denote their standard variances, σ is the covariance of F ori and 

˜ F , and c 1 , c 2 > 0 are constants. PSNR value

and SSIM value measure the distance and the structural similarity between F ori and 

˜ F , respectively. Higher values indicate

better image quality. 

Parameters setting. The parameter settings for our method are as follows. We set the iteration number of the Newton

method to 10, the outer loop to d max = 500 , the search window in block-matching to s win 

= 30 . For noise levels γ = 5

and γ = 10 , we set the patch size to 6 × 6 and 8 × 8, the similar patch number to 60 and 80, respectively. We empirically

set λ ∈ [1.5, 3] with increment of 0.1 and β ∈ [0.1, 1] with increment of 0.1 to get the highest PSNR value. For all denoised

groups, we stop our algorithm according to the relative error between two successive iterations, i.e., 

‖ F d+1 − F d ‖ 

2 
F 

‖ F d ‖ 

2 
F 

< 10 

−5 . 

As compared methods, there are some parameters which play an important role in restored results, such as the quadratic

term parameter relied on convexity condition in CTV, the penalty parameter which controls the convergent speed in NTV,

thus we tune these parameters according to the satisfied condition. For a fair comparison, we try our best to tune the

parameters involved in compared methods according to the authors’ suggestions to achieve the highest PSNR values. 

Comparison results. Figs. 5 and 6 show the denoising results with noise levels γ = 5 and γ = 10 . We can observe that

the results recovered by both CT V and NT V have staircase effects in smooth regions and undesired pixels in the boundary.

Especially, the results of NTV still contain some corrupted pixels when γ = 5 , which can be seen in the face part of the

Barbara image. Although NGMF and GMMF can effectively reduce noise, for a large noise level γ = 10 , NGMF destroys the

edges such as the eaves of the Wall image and GMMF oversmoothes the structures and loses many image details such as

the scarf of the Barbara image and the face area of the Cameraman image. As a comparison, our method can effectively

remove Cauchy noise and outperform both compared methods in terms of edge and detail preservation by well maintaining

the most intact structures and boundary. 

Figs. 7 and 8 show the zoom-in regions of restored images. From these restored images, we can see that the proposed

method obtains smoother image with clearer texture and line pattern. Fig. 9 displays the intensities of a row of the recovered

Wall images with γ = 5 . It is clear that the intensity profile of the proposed method has almost the same curve as the

original one and keeps the smoothness best. 

Tables 1 and 2 present PSNR and SSIM values of restored images by all methods. The highest results for each quality

index are labeled in bold. It is clear that for different noise levels, the proposed method achieves the highest PSNR and

SSIM values. 
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Fig. 10. Effects of the patch size. Top: PSNR values of the proposed method on three images with γ = 5 using different patch sizes. Bottom: Restored 

images of Barbara with different patch sizes. 

Fig. 11. Effects of the number of the non-local similar patches on denoising results. 

 

 

 

 

 

 

 

 

 

5. Discussions 

5.1. Effect of the patch size 

We discuss the effect of the patch size s on the denoising performance. Fig. 10 plots the PSNR values of the proposed

method on three images with s = 3 , 6 , 9 , 12 and the noise level γ = 5 . And we also provide a denoising example on Barbara.

Regarding PSNR, we observe that the highest PSNR value is obtained when s = 6 . Regarding visual quality, it is clear that

the result of s = 6 exhibits the best image textures and details. Therefore, we empirically fix s = 6 on the noise level γ = 5 .

Similarly, we set the patch size s = 8 for γ = 10 . 

5.2. Number of non-local similar patches 

We investigate the effects of the number of non-local similar patches t on the denoising performance. Fig. 11 shows the

PSNR and SSIM values as a function of t when the noise level γ = 5 . We observe that the PSNR value is stable with respect

to t and the highest SSIM value is achieved around t = 60 . Therefore, in the case of noise level γ = 5 , we set t = 60 as the

number of non-local similar patches. Similarly, we set t = 80 when γ = 10 . 

5.3. Numerical convergence 

In this subsection, we empirically demonstrate the convergence of the proposed algorithm. In Section 3 , Theorem 1

demonstrates that with a given initial value, Algorithm 2 converges to a unique stationary point. Fig. 12 plots of the relative
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Fig. 12. Plots of the relative error values of restored groups versus iteration numbers, based on image Parrot with γ = 5 in four kinds of regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

error values of restored groups versus iteration numbers, based on image Parrot with γ = 5 in four kinds of regions. We

observe that as the iteration number increases, the relative errors between two successive restored groups approach to zero

in all cases. 

6. Conclusion 

We propose a new method based on group-based low-rank image prior for Cauchy noise removal. We stack the similar

patches from the noisy image as a matrix, and then formulate the Cauchy noise removal problem as the low-rank matrix

recovery problem. We have developed an efficient numerical scheme based on ADMM for solving the proposed model with

guaranteed convergence. Experiments demonstrate the effectiveness of the proposed method. In the future, we will extend

the proposed method to other image processing applications [21,46,51] . 
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