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The methods based on the total variation are effective for image deblurring and denoising, 

which can preserve edges and details of images. However, these methods usually produce 

some staircase effects. In order to alleviate the staircase effects, we propose a new convex 

model based on the total variation with overlapping group sparsity for recovering blurred 

images corrupted by Cauchy noise. Moreover, we develop an algorithm under the frame- 

work of the alternating direction method with multipliers, and use the majorization mini- 

mization to solve subproblems of the proposed algorithm. Numerical results illustrate that 

the proposed method outperforms other methods both in visual effects and quantitative 

measures, such as the peak signal-to-noise ratio and the structural similarity index. 
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1. Introduction 

Image restoration is a fundamental issue in the image processing, such as denoising [14,21,50] , deblurring [24,43] , super-

resolution [17,55] , and image inpainting [5,38,57] . Mathematically speaking, the degraded images are the convolution of the

point spread function (PSF) with true images and plus some noise. In most practical applications, obtained images are cor-

rupted by additive Gaussian noise. Actually, in many cases, the noise does not satisfy the Gaussian assumption, such as im-

pulse noise [9,45] , multiplicative noise [19,22,63] , and Cauchy noise [31,36,48] . In this paper, we consider recovering blurred

images corrupted by Cauchy noise, which usually arises in radar and sonar applications, biomedical images, atmospheric

and synthetic aperture radar images [31,36,49] . We consider the degradation model as the following linear system: 

g = H f + n, 

where f ∈ R 

n ×n is the original gray-scale image with compacted Lipschitz boundary, g is the observed image, H is a convo-

lution operator, and n is Cauchy noise. The probability density function of Cauchy distribution with x is expressed as 

p(x ) = 

γ

π(γ 2 + (x − δ) 2 ) 
, 

where δ is a localization parameter which corresponds to the median of the distribution, and γ > 0 is a scale parameter that

decides the spread of the distribution around δ [46] . Without loss of generality, in the following discussion, we consider
δ = 0 . 
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Recently, several researchers have paid an attention to Cauchy noise. Chang et al. [13] studied a recursive restoration

algorithm based on Markov random field model to reconstruct images under Cauchy noise. Wan et al. [56] studied a novel

image segmentation method for the color image corrupted by Cauchy noise. 

In the literature, approaches based on the total variation (TV) regularization for image restoration have attracted great

attention [10,33,35,51,54,59] . For a gray image f ∈ R 

n ×n , the discrete gradient operator ∇ f : R 

n ×n → (R 

n ×n , R 

n ×n ) is defined

by 

(∇ f ) i, j = ((∇ x f ) i, j , (∇ y f ) i, j ) 

with 

(∇ x f ) i, j = 

{
f i +1 , j − f i, j , if i < n, 

f 1 , j − f n, j , if i = n 

and 

(∇ y f ) i, j = 

{
f i, j+1 − f i, j , if j < n, 

f i, 1 − f i,n , if j = n 

for i, j = 1 , 2 , . . . , n, where f i , j is the ( i , j )th pixel in the image and ∇ x and ∇ y are the horizontal and vertical gradient

operators, respectively. The discrete TV of f is 

T V ( f ) = ‖∇ f‖ 1 = 

∑ 

1 ≤i, j≤n 

| (∇ f ) i, j | = 

∑ 

1 ≤i, j≤n 

√ | (∇ x f ) i, j | 2 + | (∇ y f ) i, j | 2 . 

Sciacchitano et al. [52] proposed a TV-based variational model for deblurring degraded images with Cauchy noise. The

discrete TV-based model was described as follows: 

arg min 

f 

λ

2 

〈 
log 

(
γ 2 + (H f − g) 2 

)
, 1 

〉 
+ T V ( f ) , (1)

where λ> 0 is the regularization parameter, which controls the balance between the fidelity term and the regularization

term, 〈 · 〉 denotes the standard inner product, and 1 ∈ R 

n ×n is a matrix whose elements equal 1. If H is the identity operator,

the degraded f is only corrupted by Cauchy noise. Since the fidelity term based on Cauchy distribution is non-convex, the

solution of (1) depends on the initial guess. To overcome this shortcoming, the authors [52] added a quadratic penalty term,

then they introduced the following convex variational model: 

arg min 

f 

λ

2 

(〈 
log 

(
γ 2 + (H f − g) 2 

)
, 1 

〉 
+ μ ‖ H f − ˆ f ‖ 

2 
F 

)
+ T V ( f ) , (2)

where ˆ f denotes the image obtained by applying the median filter and μ is a positive penalty parameter. From [52] , we

know that if 8 μγ 2 ≥ 1, the objective function in (2) is strictly convex, and the primal-dual algorithm [8] was used to solve

the convex model. Mei et al. [44] focused on the non-convex model (1) . They developed the alternating direction method

with multipliers (ADMM) to solve the non-convex variational model (1) with convergence guarantees, and achieved better

performance than the method proposed in [52] . But the solution strongly depends on the initial guess. 

Although the TV regularization can preserve fine features and sharp edges, it also produces staircase effects [2,7,12,18,64] .

There are many methods which focus on overcoming the limitations of TV, such as replacing the original TV regularization

by high-order TV prior [11,41,42,58] , framelet prior [6,34] , or image restoration via deep learning [62] . In [53] , Selesnich

and Chen considered the total variation with overlapping group sparsity (OGS-TV) for one-dimensional signal denoising.

They applied the majorization minimization (MM) method to solve their model. Then, Liu et al. [39] extended the OGS-

V regularizer to two-dimensional cases for images deblurring under Gaussian noise. Compared with the TV regularization

based model, the numerical experiments showed that their method can preserve the edges and overcome the staircase

effects effectively. 

The TV-based denoising method in [52] considered the sparsity of the gradient of the image. But from Fig. 1 , the gra-

dient tends to be group sparse. Therefore, we utilize the sparsity and group sparsity of the gradient to reduce staircase

effects. Moreover, in Fig. 2 , we present the recovered images by the TV-based method proposed in [52] and our method for

removing Cauchy noise. From this figure, it can be seen that OGS-TV leads to a result with fewer staircase effects compared

to TV-based method, such as the parts labeled by blue boxes. And the labeled red boxes in the bottom panel of Fig. 2 are

shown in detail. 

Based on these observations, we consider the total variation with overlapping group sparsity for image deblurring under

Cauchy noise. By combining the fidelity term in (2) with the OGS-TV regularizer, we consider the following convex model

for deblurring images under Cauchy noise: 

arg min 

f 

λ

2 

(〈 
log 

(
γ 2 + (H f − g) 2 

)
, 1 

〉 
+ μ ‖ H f − ˆ f ‖ 

2 
F 

)
+ �( f ) , (3)

where �( · ) denotes the OGS-TV function (see the definition in Section 2.1 ). Then, we develop an efficient algorithm to

solve the model under the framework of ADMM. The MM is used for solving the subproblems of the proposed method.
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Fig. 1. Illustration of the overlapping group sparsity of the gradient of image. (a) the horizontal gradient image of Cameraman and (b) the horizontal 

gradient image of Lena. The large values of gradient are not isolated, but generally adjacent to other large values, which are shown in the red box. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Illustration of the ability of alleviating staircase effects by using the overlapping group sparsity of the gradient. First row: the denoising results on 

Cauchy noise. Second row: the intensities of a random row (the transversal line) of the image. (a) the original image, (b) the restored image by TV method, 

and (c) the restored image by our method. 

 

 

 

 

 

 

According to our numerical results, we can observe that our new convex model using the OGS-TV regularizer maintains the

edge-preserving property of the TV method and overcomes staircase effects. 

The paper proceeds as follow. In Section 2 , we briefly review the definition of the OGS-TV function, the ADMM algorithm,

and MM method. In Section 3 , we introduce the convex model for the deblurring image under Cauchy noise and apply

ADMM to solve the model. In Section 4 , numerical experiments demonstrate that the effectiveness of the proposed method.

In Section 5 , we analyze the experimental results and discuss the sensitivity of parameters. Finally, we summarize this paper

in Section 6 . 

2. Preliminaries 

In this section, we introduce the definition of OGS-TV, and review the ADMM and MM algorithms. 

2.1. OGS-TV 

For the two-dimensional case, such as an image v ∈ R 

n ×n , we define a K -square-point group ( K determines the group

size) by 



M. Ding et al. / Applied Mathematics and Computation 341 (2019) 128–147 131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜ v i, j,K,K = 

⎡ ⎢ ⎢ ⎣ 

v i −a 1 , j−a 1 v i −a 1 , j−a 1 +1 . . . v i −a 1 , j+ a 2 
v i −a 1 +1 , j−a 1 v i −a 1 +1 , j−a 1 +1 . . . v i −a 1 +1 , j+ a 2 

. . . 
. . . 

. . . 
. . . 

v i + a 2 , j−a 1 v i + a 2 , j−a 1 +1 . . . v i + a 2 , j+ a 2 

⎤ ⎥ ⎥ ⎦ 

∈ R 

K×K , (4)

where a 1 = [ K−1 
2 ] , a 2 = [ K 2 ] , and [ x ] denotes the largest integer less than or equal to x . Let v i, j,K,K be a K 

2 -vector obtained

by arranging all the elements of ̃  v i, j,K,K in lexicographic order. Then the overlapping group sparsity functional of the two-

dimensional array is defined by 

ϕ(v ) = 

n ∑ 

i =1 

n ∑ 

j=1 

‖ v i, j,K,K ‖ 2 . (5)

Consequently, we set the regularization term �( f ) as 

�( f ) = ϕ(∇ x f ) + ϕ(∇ y f ) . (6)

We call the regularizer �( f ) as OGS-TV. Note that if K = 1 , in the literature, �( f ) is usually mentioned as the anisotropic

TV function. 

2.2. ADMM 

ADMM is a simple but powerful algorithm that is well suited to solve the convex optimization problem [1,29] . The

algorithm solves the following optimization problem with a linear constraint: 

min �1 (x 1 ) + �2 (x 2 ) , 

s.t. A 1 x 1 + A 2 x 2 = b, 

x i ∈ X i , i = 1 , 2 , (7)

where X i ⊆ R 

m i are the nonempty closed convex set, �i : X i → R denote the closed convex function, A i ∈ R 

l×m i are the linear

transform, and b ∈ R 

l is a given vector. 

By introducing a Lagrangian multiplier p ∈ R 

l to the linear constraint, we get the following augmented Lagrangian func-

tion: 

L (x 1 , x 2 , p) = �1 (x 1 ) + �2 (x 2 ) + 〈 p, b − A 1 x 1 − A 2 x 2 〉 + 

β

2 

‖ b − A 1 x 1 − A 2 x 2 ‖ 

2 
2 , (8)

where β is a positive penalty parameter. 

According to the framework of the ADMM, a saddle point of (8) can be achieved by the alternative minimizing scheme.

Then, we obtain the following ADMM algorithm: 

Algorithm 1 ADMM for the minimization problem (7) . 

1: Initialize x 0 
1 
, x 0 

2 
, p 0 ; set β > 0 . 

2: For k = 1 , 2 , . . . , compute x k +1 
1 

, x k +1 
2 

, p k +1 by 

x k +1 
1 = arg min 

x 1 ∈X 1 
�1 (x 1 ) + 

β

2 

‖ b − A 1 x 1 − A 2 x 
k 
2 + 

p k 

β
‖ 

2 
2 

x k +1 
2 = arg min 

x 2 ∈X 2 
�2 (x 2 ) + 

β

2 

‖ b − A 1 x 
k +1 
1 − A 2 x 2 + 

p k 

β
‖ 

2 
2 

p k +1 = p k + β(b − A 1 x 
k +1 
1 − A 2 x 

k +1 
2 ) . 

3: Until satisfying a stopping criterion. 

2.3. MM 

Instead of minimizing a difficult minimization problem O (v ) directly, the MM solves a sequence of easier optimization

problems P (v , v k ) (k = 0 , 1 , 2 , . . . ) . Generally, a MM iterative algorithm for minimizing O (v ) is written as 

v k +1 = arg min 

v 
P (v , v k ) , (9)
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where P (v , v ′ ) is a majorizer of O (v ) , i.e., P (v , v ′ ) ≥ O (v ) for all v , v ′ , and P (v , v ) = O (v ) . When O (v ) is convex, under some

mild conditions, the sequence { v k } produced by (9) converges to the minimizer of O (v ) [25,47] . 

Next, we consider a minimization problem as 

min 

v 
O (v ) , (10) 

where O (v ) = 

β
2 ‖ v − v 0 ‖ 2 2 

+ ϕ(v ) , v ∈ R 

n 2 , β is a positive parameter and the functional ϕ( · ) is defined as (5) . Obviously, the

problem O (v ) in (10) is convex. In order to obtain an efficient solution of (10) by the MM, we first find a majorizer of O (v ) .
Here, we just need to find a majorizer of ϕ(v ) . Note that 

1 

2 

(
1 

‖ u ‖ 2 

‖ v ‖ 

2 
2 + ‖ u ‖ 2 

)
≥ ‖ v ‖ 2 , (11) 

for all v and u 
 = 0, and with equality when v = u . Using (11) for each group, we get a majorizer of ϕ(v ) , 

Q(v , u ) = 

1 

2 

n ∑ 

i =1 

n ∑ 

j=1 

[ 
1 

‖ u i, j,K,K ‖ 2 

‖ v i, j,K,K ‖ 

2 
2 + ‖ u i, j,K,K ‖ 2 

] 
, (12)

with Q(v , u ) ≥ ϕ(v ) , Q(u, u ) = ϕ(u ) , provided that ‖ u i , j , K , K ‖ 2 
 = 0 for all i , j . After a simple calculation, Q(v , u ) can be writ-

ten as 

Q(v , u ) = 

1 

2 

‖ 
(u ) v ‖ 

2 
2 + C, (13) 

where C is a constant that does not depend on v , and 
( u ) is a diagonal matrix with each diagonal component 

[
(u )] l,l = 

√ 

a 2 ∑ 

i = −a 1 

a 2 ∑ 

j= −a 1 

[ a 2 ∑ 

k 1 = −a 1 

a 2 ∑ 

k 2 = −a 1 

| u l −i + k 1 ,l − j+ k 2 | 2 
] 

− 1 
2 (14) 

with l = 1 , 2 , . . . , n 2 . The entries of 
 can be easily computed by the convolution operation. 

Then the majorizer of O (v ) can be expressed as 

P (v , u ) = 

β

2 

‖ v − v 0 ‖ 

2 
2 + Q(v , u ) = 

β

2 

‖ v − v 0 ‖ 

2 
2 + 

1 

2 

‖ 
(u ) v ‖ 

2 
2 + C, (15)

with P (v , u ) ≥ O (v ) for all v , u , and P (u, u ) = O (u ) . To minimize O (v ) , the MM aims to iteratively solve 

v k +1 = arg min 

v 

β

2 

‖ v − v 0 ‖ 

2 
2 + 

1 

2 

‖ 
(v k ) v ‖ 

2 
2 , k = 0 , 1 , 2 , . . . . (16)

Then we get the solution of (16) easily 

v k +1 = 

(
I + 

1 

β

2 (v k ) 

)−1 

v 0 , k = 1 , 2 , . . . , (17) 

where I is an identity matrix with the same size of 
2 (v k ) . To summarize, we obtain Algorithm 2 for solving the problem

(10) . 

Algorithm 2 The MM method for solving (10) . 

1: Initialize v 0 = v 0 , k = 0 , set β , K, maximum iteration N. 

2: Iteration 

[
(u )] l,l = 

√ √ √ √ 

a 2 ∑ 

i = −a 1 

a 2 ∑ 

j= −a 1 

[ 

a 2 ∑ 

k 1 = −a 1 

a 2 ∑ 

k 2 = −a 1 

| u l −i + k 1 ,l − j+ k 2 | 2 
] 

− 1 
2 

v k +1 = 

(
I + 

1 

β

2 (v k ) 

)−1 

v 0 

k = k + 1 . 

3: If satisfies iteration N, return v k +1 and stop. 
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3. The proposed algorithm 

Since the fidelity term contains log 
(
γ 2 + (H f − g) 2 

)
, the model (1) is non-convex. To deal with the difficulty on non-

convexity, inspired by Sciacchitano et al. [52] , we add an extra quadratic term and propose the following convex variation

model: 

arg min 

f 

λ

2 

(〈 
log 

(
γ 2 + (H f − g) 2 

)
, 1 

〉 
+ μ ‖ H f − ˆ f ‖ 

2 
F 

)
+ ϕ(∇ x f ) + ϕ(∇ y f ) . (18)

The following theorem establishes the existence and uniqueness of the solution of the proposed model (18) . 

Theorem 1. Assume that Nul l (H) ∩ Nul l (∇) = { 0 } with Null ( · ) denotes the null space, the model (18) has at least one solution.

If 8 μγ 2 ≥ 1, there exists a unique solution. 

Proof. Denote by E ( f ) the objective function of (18) . It is clear that E ( f ) is proper, continuous. According to the Weier-

strass’ theorem [3] , it remains only to show the coercivity of E ( f ), i.e., for every sequence { f k } such that ‖ f k ‖ F → ∞ , we have

lim k →∞ 

E( f k ) = ∞ . We prove it by contradiction. Suppose that there exists a subsequence of { f k } (also denoted as { f k }) that

{ E ( f k )} is bounded, we have that { ‖ Hf k ‖ F } and { �( f k )} are bounded, then { ‖∇f k ‖ 1 } is bounded. According to the assump-

tion Nul l (H) ∩ Nul l (∇) = { 0 } , the sequence { f k } is a bounded sequence, which is a contradiction. So the model (18) has at

least one minimizer. From the previous definition (6) , we can get that OGS-TV is convex. Similar to the proof in [52] , when

8 μγ 2 ≥ 1, the objective function (18) is strictly convex and the solution is unique. �

As the proposed model is a convex optimization problem, there are many efficient algorithms to solve the model (18) ,

such as the Bregman method [27,61] , the primal-dual algorithm [8,23] , the proximal splitting method [15] , and the alternat-

ing direction method with multipliers (ADMM) [4,26,32] . Here we just discuss ADMM. 

Note that the pixel values of any true digital image can attain only a finite number of values. So it is natural to require

all pixels of the restored image in a certain interval [ a , b ], see [10] for more details. For the easy computation and the

certified results in [10] , we only consider image located on the range [0,1]. We define a projection operator P � on the set

� = { f ∈ R 

n ×n | 0 � f i, j � 1 } , 

P �( f ) i, j = 

{ 

0 , f i, j < 0 , 

f i, j , f i, j ∈ [0 , 1] , 
1 , f i, j > 1 . 

(19)

And for convenience, we define an indication function for a set 

ᵀ � = 

{
0 , x ∈ �, 

+ ∞ , x 
∈ �. 
(20)

where � = [ a, b] . 

For the model (18) , by introducing four auxiliary variables z , v x , v y , and w together with the indication function (20) , we

get the equivalent constrained minimization problem 

arg min 

f 

λ

2 

(〈 
log 

(
γ 2 + (z − g) 2 

)
, 1 

〉 
+ μ ‖ z − ˆ f ‖ 

2 
F 

)
+ ϕ(v x ) + ϕ(v y ) + T  �(w ) 

s.t. z = H f, v x = ∇ x f, v y = ∇ y f, w = f . (21)

Then, (21) can be further expressed in a compact form 

min �1 (x 1 ) + �2 (x 2 ) , 

s.t. A 1 x 1 + A 2 x 2 = b, (22)

where 

x 1 = f, x 2 = 

⎛ ⎜ ⎝ 

z 
v x 
v y 
w 

⎞ ⎟ ⎠ 

, A 1 = 

⎛ ⎜ ⎝ 

H 

∇ x 

∇ y 

I 

⎞ ⎟ ⎠ 

, A 2 = 

⎛ ⎜ ⎝ 

−I 
−I 

−I 
−I 

⎞ ⎟ ⎠ 

, b = 

⎛ ⎜ ⎝ 

0 

0 

0 

0 

⎞ ⎟ ⎠ 

, 

�1 (x 1 ) = 0 , and �2 (x 2 ) = 

λ
2 (〈 log (γ 2 + (z − g) 2 ) , 1 〉 + μ ‖ z − ˆ f ‖ 2 

F 
) + ϕ(v x ) + ϕ(v y ) + T  �(w ) . 

Let u 1 , u 2 , u 3 , and u 4 be the Lagrangian multipliers, we then form the augmented Lagrangian function as follows: 

L (v x , v y , w, z, f ; u 1 , u 2 , u 3 , u 4 ) = ϕ(v x ) + 〈 u 1 , ∇ x f − v x 〉 + 

β1 

2 

‖∇ x f − v x ‖ 

2 
F 

+ ϕ(v y ) + 〈 u 2 , ∇ y f − v y 〉 + 

β1 ‖∇ y f − v y ‖ 

2 
F 
2 
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+ 

λ

2 

(〈 
log 

(
γ 2 + (z − g) 2 

)
, 1 

〉 
+ μ ‖ z − ˆ f ‖ 

2 
F 

)
+ 〈 u 3 , H f − z〉 

+ 

β2 

2 

‖ H f − z‖ 

2 
F + 〈 u 4 , f − w 〉 + 

β3 

2 

‖ f − w ‖ 

2 
F + T  �(w ) , (23) 

where β1 , β2 , β3 > 0 are penalty parameters. 

Then the ADMM for solving (21) is to update variables alternatively by minimizing the augmented Lagrange function

(23) over z , v x , v y , w, and f . The optimization problem is well structured since all the variables are separated into two

groups, ( f ) and ( z , v x , v y , w ). The variables ( z , v x , v y , w ) are independent so that they can be solved respectively. In particular,

the iterative scheme for solving (21) can be expressed as follows: 

1. v x , v y -subproblem 

From the above discussion, it is obvious to see that the v x -subproblem and the v y -subproblem are independent, we

handle them respectively, 

v k +1 
x = arg min 

v x 
ϕ(v x ) + 〈 u 

k 
1 , ∇ x f 

k − v x 〉 + 

β1 

2 

‖∇ x f 
k − v x ‖ 

2 
F 

= arg min 

v x 
ϕ(v x ) + 

β1 

2 

‖ v x − ∇ x f 
k − u 

k 
1 

β1 

‖ 

2 
F , (24) 

v k +1 
y = arg min 

v y 
ϕ(v y ) + 〈 u 

k 
2 , ∇ y f 

k − v y 〉 + 

β1 

2 

‖∇ y f 
k − v y ‖ 

2 
F 

= arg min 

v y 
ϕ(v y ) + 

β1 

2 

‖ v y − ∇ y f 
k − u 

k 
2 

β1 

‖ 

2 
F . (25) 

Since the problems (24) and (25) match the framework of the problem (10) , thus we can apply Algorithm 2 . 

2. z -subproblem 

z k +1 = arg min 

z 

λ

2 

(〈 
log 

(
γ 2 + (z − g) 2 

)
, 1 

〉 
+ μ ‖ z − ˆ f ‖ 

2 
F 

)
+ 

β2 

2 

‖ z − H f k − u 

k 
3 

β2 

‖ 

2 
F . (26) 

As there exists the second order derivative for the objective function in (26) , we determine to solve the Eq.(26) by using

the Newton method. The Newton method will converge, provided the initial point is close enough to the root of the

derivative of the z -subproblem. 

3. w -subproblem 

w 

k +1 = arg min 

w 

〈 u 

k 
4 , f 

k − w 〉 + 

β3 

2 

‖ f k − w ‖ 

2 
F + T  �(w ) 

= arg min 

w 

β3 

2 

‖ w − f k − u 

k 
4 

β3 

‖ 

2 
F + T  �(w ) . (27) 

By the sample projection, we get the minimizer explicitly by 

w 

k +1 = P �

[ 
f k + 

u 

k 
4 

β3 

] 
. (28) 

4. f -subproblem 

The f -subproblem corresponds to the following optimization problem: 

f k +1 = arg min 

f 

β1 

2 

‖∇ x f − v k +1 
x + 

u 

k 
1 

β1 

‖ 

2 
F + 

β1 

2 

‖∇ y f − v k +1 
y + 

u 

k 
2 

β1 

‖ 

2 
F 

+ 

β2 

2 

‖ H f − z k +1 + 

u 

k 
3 

β2 

‖ 

2 
F + 

β3 

2 

‖ f − w 

k +1 + 

u 

k 
4 

β3 

‖ 

2 
F . (29) 

The function is quadratic in f . Thus, the optimal solution of (29) satisfies 

A f k +1 = B, (30) 

where 

A = β1 (∇ 

T 
x ∇ x + ∇ 

T 
y ∇ y ) + β2 H 

T H + β3 I, 

B = ∇ 

T 
x (β1 v k +1 

x − u 

k 
1 ) + ∇ 

T 
y (β1 v k +1 

y − u 

k 
2 ) + H 

T (β2 z 
k +1 
y − u 

k 
3 ) + β3 

(
w 

k +1 − u 

k 
4 

β3 

)
. (31) 
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It should be pointed that H , ∇ x , and ∇ y in image restoration are highly structured. In specific, their exact structures

depend on the imposed boundary conditions. Here, we use the periodic boundary condition, so H , ∇ x , and ∇ y are the

block circulant with circulating block (BCCB) structure. After applying 2D fast Fourier transforms, the optimal f is formed

directly 

f k +1 = F 

−1 
(

F (B ) 

F (A ) 

)
. (32)

5. Updating multipliers via ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

u 

k +1 
1 

= u 

k 
1 + β1 (∇ x f 

k +1 − v k +1 
x ) , 

u 

k +1 
2 

= u 

k 
2 + β1 (∇ y f 

k +1 − v k +1 
y ) , 

u 

k +1 
3 

= u 

k 
3 + β2 (H f k +1 − z k +1 ) , 

u 

k +1 
4 

= u 

k 
4 + β3 ( f k +1 − w 

k +1 ) . 

(33)

Finally, we summary the proposed ADMM in Algorithm 3 . 

Algorithm 3 ADMM for solving (18) . 

1: Initialize v 0 x , v 0 y , w 

0 , z 0 , f 0 , u 0 
1 
, u 0 

2 
, u 0 

3 
, u 0 

4 
, λ, μ, β1 , β2 , β3 , K , maximum inner iteration N; set k = 0 . 

2: Iteration 

3: Compute v k +1 
x according to (24) using Algorithm 2; 

4: Compute v k +1 
y according to (25) using Algorithm 2; 

5: Compute z k +1 using Newton method; 

6: Compute w 

k +1 according to (28); 

7: Compute f k +1 according to (32); 

8: Update multipliers according to (33); 

9: If f k +1 satisfies the stopping criteria, return f k +1 and stop. 

The minimization problem (21) fits the framework (7) of ADMM. Owing to the convexity of the proposed model, the

convergence of the proposed algorithm is theoretically guaranteed [20,30] . 

4. Numerical experiments 

In this section, we present several numerical experiments to demonstrate the performance of the proposed method for

restoring blurred images corrupted by Cauchy noise. Firstly, we focus on denoising cases, then we consider the deblurring

cases under Cauchy noise. All test images are shown in Fig. 3 , twelve 256-by-256 gray-scale images. All numerical experi-

ments are performed on Windows 10 64-bit and Matlab R2012a running on a desktop equipped with an Intel(R) Core(TM)

i7-8700K CPU with 3.7 GHz and 16 GB of RAM. 

We compare our method OGS-TV with other two well-known methods: the median filter and the convex variational

approach proposed in [52] (“TV” for short). Furthermore, we also compare our method with other methods, such as the

myriad filter [28] , the SURE-LET [40] , the BM3D [16] , and Mei’s method [44] . 

The qualities of recovered images are measured by the peak signal-to-noise ratio (PSNR) and the structural similarity

index (SSIM) [60] , which are defined as 

PSNR = 10 log 10 

Max 2 
f, ̃ f 

‖ f − ˜ f ‖ 

2 
F 

, SSIM = 

2 μ f μ ˜ f 
(2 σ + c 2 ) 

(μ2 
f 
+ μ2 

˜ f 
+ c 1 )(σ 2 

f 
+ σ 2 

˜ f 
+ c 2 ) 

, 

where f and 

˜ f are the original image and the restored image, respectively, Max 
f, ̃ f 

is the maximum possible pixel value of

the image f and 

˜ f , μf and μ ˜ f 
denote their means, σ 2 

f 
and σ 2 

˜ f 
denote their variances, σ is the covariance of ˜ f and f , and

c 1 , c 2 > 0 are constants. The value of PSNR satisfies the human subjective sensation, and the higher PSNR value, the better

quality of the restored image. The value of SSIM conforms with the quality perception of the human visual system. The

characteristic of the restored image is more similar to the original image if the SSIM value is closer to 1. 

Parameters setting. The parameter settings for our method are as follows. We remark that, in denoising case, H is the

identity operator, the degraded f is only corrupted by Cauchy noise. So in (23) , there are three parameters λ, β1 , and β2 to

tune by hand. We set the group size K = 3 in OGS-TV, the inner iteration N = 10 in the MM method, the iteration number

as 5 in the Newton’s method, λ∈ [4, 20], β1 = 600 , β2 = 100 , and β3 = 50 . Since γ depends on the noise level, we use

the same γ for all experiments under the same noise level. Numerical experiments show that our method is robust with

respect to μ. Therefore, we choose μ such that the convexity condition is just satisfied, i.e., 8 μγ 2 = 1 . In addition, since the

regularization parameter λ balances between the fidelity term and the regularization term, we manually tune it in order to

obtain the highest PSNR value of the restored images. 
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Fig. 3. Original images. 

 

 

 

 

 

 

 

 

 

 

We terminate our algorithm by the following stopping condition, 

| E( f k +1 ) − E( f k ) | 
| E( f k ) | < 10 

−5 , 

where E is the objective function of (18) . 

4.1. Image denoising 

In this subsection, we focus on the denoising cases. Since a standard Cauchy random variable is obtained by the ratio of

two independent standard normal variables, so we generate the noisy image g by using the following degradation: 

g = f + v = f + ξ
η1 

η2 

, 

where v represents the Cauchy distribution, ξ > 0 represents the noise level, and η1 and η2 are independent random vari-

ables following Gaussian distribution with mean 0 and variance 1. Empirically, we set ξ = γ 2 for the good experimental

performance. 

In Figs. 4 and 6 , we show the restored images by different methods for removing Cauchy noise with the noise level

ξ = 0 . 02 and ξ = 0 . 04 , respectively. Although the median filter reduces the noise effectively, it also oversmoothes the edges.

From the restored images, it is obvious that the TV method produces staircase effects in the denoising results, while the

proposed method overcomes this drawback. Especially, we can see that the background are rough in Fig. 4 (j), (k), (n), (o),

(r), and (s). However, our method can keep the background smooth commendably. 

To further illustrate clearly the superiority of the proposed OGS-TV method, we show the zoom-in regions of recovered

images in Figs. 5 and 7 . From these figures, we can see that the median filter recovers the background worst. The TV method

generates staircase effects, such as the nose of Baby, the top of Cameraman, and the funnel of Boat. And our method can

overcome staircase effects, while keeping the edges and details. 
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Fig. 4. Comparison of restored images from different methods for removing Cauchy noise. The number under images represents the PSNR (dB) of images. 

First column: noisy images ( ξ = 0 . 02 ); second column: restored images by the median filter; third column: restored images by TV method ( λ = 0 . 8 (Baby); 

0.8 (Beauty); 0.9 (Cameraman); 0.9 (Boat); 0.9 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
); fourth column: restored images by our method ( λ = 3 (Baby); 4 (Beauty); 

4 (Cameraman); 4 (Boat); 4 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
). 
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Fig. 5. Zoomed vision of restored images in Fig. 4 . (a) original images, (b) restored images by the median filter, (c) restored images by TV method, and (d) 

restored images by our method. 

Table 1 

The PSNR (dB) and SSIM values for the noisy images and restored images by different methods 

( ξ = 0 . 02 ). 

Image PSNR SSIM 

Noisy Median TV Ours Noisy Median TV Ours 

Baby 19.13 31.66 32.68 33.34 0.3060 0.8873 0.9075 0.9328 

Beauty 19.10 29.14 31.88 32.84 0.3973 0.9134 0.9101 0.9275 

Parrot 19.08 27.17 29.24 29.85 0.3973 0.8328 0.8738 0.8883 

Peppers 19.17 29.41 30.79 31.27 0.3663 0.8531 0.8842 0.8900 

Cameraman 19.14 26.15 28.40 28.93 0.3567 0.7941 0.8437 0.8781 

Tulips 19.15 26.71 28.70 28.87 0.5083 0.8319 0.8654 0.8737 

Leopard 19.13 25.47 27.98 28.37 0.4717 0.7757 0.8233 0.8435 

Lena 19.14 28.31 29.68 30.67 0.3924 0.8443 0.8734 0.8874 

Bridge 19.14 22.66 25.74 26.03 0.5938 0.6315 0.8045 0.8217 

Einstein 19.12 29.76 30.88 31.48 0.30 0 0 0.7856 0.8043 0.8312 

Boat 19.14 26.44 28.90 29.76 0.4170 0.7797 0.8394 0.8624 

House 19.06 24.67 27.85 28.22 0.4452 0.7485 0.8179 0.8466 

 

 

 

 

 

 

 

 

 

 

For comparing the performance quantitatively, Tables 1 and 2 list the PSNR and SSIM values of the noisy images and

the restored images by different methods. Obviously, comparing with the other two methods, we always obtain the highest

values with respect to PSNR and SSIM. In Table 3 , we show the comparison between the TV method and our method in

terms of PSNR, SSIM, and Time (in seconds) values. These three images are corrupted by Cauchy noise with the noise level

ξ = 0 . 02 . We can see that although TV method is faster than ours, our method achieves higher PSNR and SSIM values. 

For a fair comparison, we compare our method with Mei’s method for solving model (1) . In Fig. 8 , we show the restored

images by our method and Mei’s method for removing Cauchy noise. We can see that Mei’s method achieves better perfor-

mance than our method. But when we set μ = 0 , i.e., our model is non-convex, our method outperforms Mei’s method in

keeping details, see Fig. 8 (e). To compare the sensitivity of our convex model and Mei’s non-convex model to the initial

guess, we test on three initial guesses f 0 including the random image, the filtered image (the recovered image by the me-

dian filter), and the observed image. In Table 4 , we list the values of PSNR and SSIM by using different initial guesses for
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Fig. 6. Comparison of restored images from different methods for removing Cauchy noise. The number under images represents the PSNR (dB) of images. 

First column: noisy images ( ξ = 0 . 04 ); second column: restored images by the median filter; third column: restored images by TV method ( λ = 0 . 8 (Baby); 

0.9 (Beauty); 1 (Cameraman); 1.1 (Boat); 1 (Leopard), μ = 3 . 125 , and γ = 0 . 2 ); fourth column: restored images by our method ( λ = 4 (Baby); 4 (Beauty); 

5 (Cameraman); 5 (Boat); 5 (Leopard), μ = 3 . 125 , and γ = 0 . 2 ). 
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Fig. 7. Zoomed vision of restored images in Fig. 6 . (a) original images, (b) restored images by the median filter, (c) restored images by TV method, and (d) 

restored images by our method. 

Table 2 

The PSNR (dB) and SSIM values for the noisy images and restored images by different methods 

( ξ = 0 . 04 ). 

Image PSNR SSIM 

Noisy Median TV Ours Noisy Median TV Ours 

Baby 16.23 28.72 30.41 30.99 0.1897 0.7562 0.8779 0.8950 

Beauty 16.21 27.65 30.32 31.18 0.1591 0.7914 0.8758 0.9126 

Parrot 16.21 25.57 27.28 27.80 0.2805 0.7229 0.8169 0.8334 

Peppers 16.28 27.18 28.60 28.91 0.2430 0.7474 0.8351 0.8545 

Cameraman 16.25 24.91 26.76 27.31 0.2443 0.6715 0.8020 0.8214 

Tulips 16.26 25.40 26.57 26.72 0.3608 0.7612 0.8039 0.8129 

Leopard 16.27 24.25 25.87 26.28 0.3490 0.6912 0.7791 0.7941 

Lena 16.26 26.91 27.53 28.26 0.2658 0.7433 0.8219 0.8308 

Bridge 16.24 21.95 23.84 24.08 0.4337 0.5867 0.7053 0.7273 

Einstein 16.25 27.47 28.51 28.99 0.1783 0.6760 0.7537 0.7648 

Boat 16.26 25.10 26.63 27.16 0.2849 0.6858 0.7638 0.7929 

House 16.18 23.92 25.84 26.11 0.3139 0.6604 0.7577 0.7900 

Table 3 

Comparisons of the performance of TV and our methods on PSNR 

(dB), SSIM, and Time (in seconds). 

Image TV Ours 

PSNR SSIM Time PSNR SSIM Time 

Boat 28.90 0.8394 2.40 29.76 0.8624 5.50 

Lena 29.68 0.8734 2.33 30.67 0.8874 5.54 

House 27.85 0.8179 2.35 28.22 0.8466 4.72 
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Fig. 8. Comparison between our method and Mei’s method. The number under images denotes the PSNR (dB) value of images. (a) the original image, (b) 

the noisy image, (c) the recovered image by our method, (d) the recovered image by Mei’s method, and (e) the recovered image by our method with μ = 0 . 

Table 4 

The PSNR and SSIM values of the results by Mei’s model and our 

model with different initial guesses. 

Models Initial guesses PSNR SSIM 

Our model The random image 27.54 0.7773 

The filtered image 27.55 0.7772 

The observed image 27.55 0.7773 

Mei’s model The random image 24.30 0.7185 

The filtered image 27.59 0.7850 

The observed image 28.48 0.8104 

Our model ( μ = 0 ) The observed image 29.50 0.8363 

Fig. 9. Recovered images of different methods for removing Cauchy noise with the noise level ξ = 0 . 02 . The number under images represents the PSNR 

(dB) of images. First column: restored images by SURE-LET; second column: restored images by the myriad filter; third column: restored images by BM3D; 

fourth column: restored images by our method. 

 

 

 

 

removing Cauchy noise. It indicates that our method is stable with different initial guesses, while Mei’s method depends on

the initial guess. 

Finally, we compare our method with other methods in image denoising including the myriad filter [28] , the SURE-LET

[40] , and the BM3D [16] . Here, we test two images Cameraman and Lena degraded by Cauchy noise with the noise level

ξ = 0 . 02 . From Fig. 9 , it is clearly that our method outperforms all of compared methods. Visually, we can see that the

background are rough in Fig. 8 (b) and (f), and there is still some noise left in Fig. 8 (a), (c), (e), and (g). 
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Fig. 10. Comparison of restored images from different methods for deblurring and denoising the images degraded by a Gaussian blur and corrupted by 

Cauchy noise. The number under the images represents the PSNR (dB) of images. First column: blurred and noisy images ( ξ = 0 . 02 ); second column: 

restored images by the median filter; third column: restored images by TV method ( λ = 1 . 3 (Beauty); 2.2 (Boat); 2.1 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
); 

fourth column: restored images by our method ( λ = 10 (Beauty); 14 (Boat); 13 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
). 

Table 5 

The PSNR (dB) and SSIM values for images degraded by a Gaussian blur and Cauchy noise( ξ = 

0 . 02 ) and restored images by different methods. 

Image PSNR SSIM 

Blurred Median TV Ours Blurred Median TV Ours 

Beauty 18.96 29.69 30.63 31.60 0.2656 0.9005 0.9093 0.9248 

Baby 18.85 29.05 30.88 31.40 0.2688 0.8522 0.8805 0.8937 

Boat 18.50 24.78 25.90 26.74 0.3061 0.7199 0.7586 0.7687 

Lena 18.64 26.09 27.52 28.13 0.3185 0.7935 0.8240 0.8297 

Leopard 18.10 23.21 25.24 25.80 0.3593 0.7245 0.7756 0.7825 

Tulips 18.34 24.25 26.01 26.30 0.3951 0.7553 0.7899 0.8041 

House 18.13 23.30 24.99 25.30 0.3086 0.6986 0.7206 0.7510 

 

 

 

 

4.2. Image deblurring and denoising 

In this subsection, we consider restoring blurred images under Cauchy noise. Here, we consider two blur kernels: the

Gaussian blur kernel with size 9 and standard deviation 1; the motion blur kernel with len = 8 and theta = 30 . Then, Cauchy

noise with ξ = 0 . 02 is added into the blurred images. 

Figs. 10 and 11 show the restored images for deblurring and denoising. Tables 5 and 6 list the values of PSNR and SSIM

by applying different methods. From Tables 5 and 6 , we can see that the proposed method always obtain the highest PSNR
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Fig. 11. Comparison of restored images from different methods for deblurring and denoising the images degraded by a motion blur and corrupted by 

Cauchy noise. The number under images represents the PSNR (dB) of images. First column: blurred and noisy images ( ξ = 0 . 02 ); second column: restored 

images by the median filter; third column: restored images by TV method ( λ = 1 . 3 (Beauty); 3.3 (Boat); 3.2 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
); fourth 

column: restored images by our method ( λ = 8 (Beauty); 17 (Boat); 16 (Leopard), μ = 6 . 25 , and γ = 

√ 
2 

10 
). 

Table 6 

The PSNR (dB) and SSIM values for images degraded by a motion blur and Cauchy noise( ξ = 0 . 02 ) 

and restored images by different methods. 

Image PSNR SSIM 

Blurred Median TV Ours Blurred Median TV Ours 

Beauty 18.79 28.22 29.39 30.28 0.2495 0.8704 0.8889 0.9232 

Baby 18.37 25.88 28.81 28.96 0.2304 0.7866 0.8398 0.8546 

Boat 17.93 22.86 24.82 25.33 0.2360 0.6230 0.6804 0.7051 

Lena 18.03 23.41 25.86 26.09 0.2627 0.7058 0.7747 0.7914 

Leopard 16.86 20.44 22.59 23.09 0.2604 0.6062 0.6939 0.7163 

Tulips 17.53 21.78 24.41 24.54 0.3098 0.6239 0.7181 0.7306 

House 17.32 21.21 23.18 23.77 0.2368 0.6023 0.6797 0.6879 

 

 

 

 

and SSIM values. From Figs. 10 and 11 , the recovered images by the median filter are oversmoothing, since the median filter

does not deblur image. The TV method can recover edge and remove noise, but yield the staircase effects. This phenomenon

is especially obvious from the zoom-in regions of restored images in Fig. 12 , such as the eye of Beauty. Therefore, it is

obvious that our method not only preserves the fine features, but also removes Cauchy noise effectively. Furthermore, our

method balances well between the edge preserving and staircase effects reduction. 
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Fig. 12. Zoomed vision of restored images degraded by a Gaussian blur (the first row) and a motion blur (the second row). (a) blurred and noisy images, 

(b) restored images by the median filter, (c) restored images by TV method, and (d) restored images by our method. 

Table 7 

PSNR (dB), SSIM, and CPU-time (in seconds) for the inner iteration number N on images Cameraman and 

Parrot corrupted by Cauchy noise with the noise level ξ = 0 . 02 . 

Images N 1 3 5 10 20 50 100 200 

Cameraman PSNR 28.76 28.91 28.92 28.93 28.93 28.93 28.93 28.93 

SSIM 0.8400 0.8738 0.8770 0.8781 0.8781 0.8781 0.8781 0.8781 

Time 2.57 3.25 3.91 5.50 8.76 18.62 34.90 67.62 

Parrot PSNR 29.61 29.84 29.85 29.85 29.85 29.85 29.85 29.85 

SSIM 0.8590 0.8858 0.8878 0.8883 0.8883 0.8883 0.8883 0.8883 

Time 2.76 3.34 3.97 5.54 8.85 18.95 35.26 68.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion 

5.1. Experimental results analysis 

This paper proposes a new convex optimization model for restoring the blurred images corrupted by Cauchy noise. Our

objective is to reduce staircase effects produced by using the total variation. The experiments on different noise levels and

blur kernels show the potential of the proposed method for removing Cauchy noise, and the restored images indicate that

our method can alleviate staircase effects efficiently. 

From the gradient images illustrated in Fig. 1 , it can be observed that the gradient of the image is not only sparse, but

group sparse. Inspired by this, we utilize the sparsity and group sparsity of the gradient to reduce staircase effects. Moreover,

from the denoised images in Figs. 4 and 6 , we find that our method gives the best visual quality. The median filter works

quite well if the noise level is low, but it is not able to preserve most details. In addition, although the TV method can

remove noise efficiently, it produces staircases effects. The reason why our method performs better is because the gradient

of the image is group sparse. Specially, the results in Tables 1, 2, 5 , and 6 show that the proposed method achieves the

highest PSNR and SSIM values in all experiments than those of the comparing methods. 

In summary, our method can apply to various Cauchy noise removal and deblurring problems. 

5.2. Analysis of the parameters 

1) parameters: N , K , and λ. We study the settings of the inner iteration N in the MM, the group size K in OGS-TV, and

the regularization parameter λ. The images Cameraman and Parrot are used to study the choice of N . They are corrupted by

Cauchy noise with the noise level ξ = 0 . 02 . In order to check how the inner iteration number N impacts the performance

of the proposed method, we fix the group size K = 3 for the experiments. We set λ = 4 for images Cameraman and Parrot.

The results are shown in Table 7 . From these tables, we conclude that when the iteration number N ≥ 10, the values of PSNR

and SSIM tend to be stable, while costing more time. Therefore, we set N = 10 in our work. 
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Fig. 13. The PSNR and SSIM values on images Peppers and Tulips, as related to the group size K and the regularization parameter λ. (a) and (b): the PSNR 

and SSIM values of the testing image Peppers with respect to K and λ, respectively; (c) and (d): the PSNR and SSIM values of the testing image Tulips with 

respect to K and λ, respectively. 
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Fig. 14. The PSNR and SSIM values with respect to the parameter μ. 
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Fig. 15. The PSNR values with respect to penalty parameters β1 , β2 , and β3 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, we fix N = 10 and do more experiments to find a good group size K . We carry out experiments to compute the

PSNR and SSIM values with respect to K and λ. We test two images: Peppers degraded by Cauchy noise with the noise level

ξ = 0 . 02 ; Tulips blurred by the Gaussian blur kernel with size 9 and standard deviation 1 and corrupted Cauchy noise with

the noise level ξ = 0 . 02 . This test is also used to examine the effect of group size K and regularization parameter λ. The

results are shown in Fig. 13 . From Fig. 13 , it can be seen that the maximum PSNR and SSIM values are obtained when the

group size K = 3 . Then we empirically choose K = 3 in the experiments. It can also be observed that the performance of

the proposed method achieves the best around λ = 3 on Peppers and λ = 13 on Tulips. Since our experiments involve dif-

ferent noise levels and blur kernels, we empirically set the parameter λ∈ [2, 20]. 

2) parameters: μ, β1 , β2 , and β3 . In Fig. 14 , we plot the PSNR and SSIM values for our algorithm against different values

of μ. The test image is Cameraman corrupted by Cauchy noise with the noise level ξ = 0 . 02 (with λ = 3 ). The point at

μ = 6 . 25 marked by the solid black point in Fig. 14 refers to the PSNR value 28.93 dB and the SSIM value 0.8781. We can

see that when μ≥ 6.25, i.e., our model is convex, the PSNR and SSIM curves tend to be stable. It indicates that our method

is robust with respect to μ. Therefore, we choose μ such that the convexity condition is just satisfied, i.e., 8 μγ 2 = 1 . 

In Fig. 15 , we plot the PSNR values for our algorithm against different values of parameters β1 , β2 , and β3 . We test

three images: Cameraman corrupted by Cauchy noise with the noise level ξ = 0 . 02 (with λ = 3 ); Beauty blurred by the
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Gaussian blur kernel with size 9 and standard deviation 1 and corrupted Cauchy noise with the noise level ξ = 0 . 02 (with

λ = 10 ); Boat blurred by the motion blur kernel with len = 8 and theta = 30 and corrupted Cauchy noise with the noise

level ξ = 0 . 02 (with λ = 17 ). We remark that, in denoising case, H is the identity operator, the degraded f is only corrupted

by Cauchy noise, so there are only three parameters λ, β1 , and β2 in (23) . Thus, in the third column of Fig. 15 , there are

two PSNR curves with respect to the parameter β3 . Fig. 15 shows that the PSNR curves of our method are very flat and our

method is stable for a wide range of β1 , β2 , and β3 . That is to say, our method is robust with respect to β1 , β2 , and β3 .

Therefore, we empirically set β1 = 600 , β2 = 100 , and β3 = 50 for all our experiments. 

6. Conclusion 

In this paper, we propose a new convex variational model based on the overlapping group sparsity total variation regular-

izer for restoring the blurred images corrupted by Cauchy noise. We employ the ADMM to solve the proposed convex model.

In addition, we discuss the uniqueness of the solution of our model and the convergence analysis of the proposed algorithm.

Numerical experiments show that our proposed method outperforms other competitive methods in terms of PSNR and SSIM

values. The comparison between the reconstructed images shows that the proposed method can reduce the staircase effects

efficiently while preserving sharp edges. 

For TV method and our method, the level of Cauchy noise and the blur kernel have to be known, but it may be different

in real degraded images. So in future work, we plan to improve the OGS-TV-based method by estimating the noise level

[37] and the blur kernel. 
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