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ABSTRACT

The recent popular tensor nuclear norm (TNN), a convex sur-
rogate of tensor tubal rank, obtains promising results in ten-
sor completion. Although the TNN-based model has shown
its prominent capability of characterizing the global structure
of tensors, it lacks the capability for preserving the abundant
details of the target tensor. By integrating the global low-
tubal-rankness and nonlocal self-similarity, we propose a nov-
el tensor completion model, which recovers the global struc-
tural information by TNN regularizer while compensating for
the details by plugging in a denoiser to express the nonlo-
cal self-similarity prior. We design an alternating direction-
al method of multipliers (ADMM)-based algorithm to solve
the proposed model. Extensive experimental results on color
images and fluorescence microscope images demonstrate the
superiority of the proposed method over the compared ones.

Index Terms— Nonlocal self-similarity, tensor nuclear
norm, tensor completion, plug-and-play, alternating direction
method of multipliers.

1. INTRODUCTION

As the higher dimensional extension of matrices, tensors pro-
vide an effective form to express the structural properties of
higher-order data. Due to inevitable degradation in the acqui-
sition process, the tensor completion problem has gained its
increasing importance. Since the tensor rank is capable of ef-
ficiently catching the global information of the target tensor,
many tensor completion methods are devoted to minimizing
the tensor rank. Mathematically, the low-rank tensor comple-
tion (LRTC) model can be formulated as:

arg min
X

rank(X ), s.t. PΩ(X ) = PΩ(M),

where X is the underlying tensor,M is the observed tensor,
Ω is the index set of the observed entries, and PΩ(·) is the
projection function, which keeps the entries of X in Ω while
making others be zeros.

However, there is no consensus on the most appropriate
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definition of tensor rank. And directly minimizing the ten-
sor rank is NP-hard [1]. Therefore, the common practice is
to design convex or non-convex [2, 3] surrogate optimization
alternatives based on different definitions [4].

Recently, the tensor tubal rank defined based on tensor
singular value decomposition (t-SVD) has shown its effec-
tiveness to exploit the inherent low-rank structure of a tensor
[5–8]. Inspired by the success of matrix nuclear norm, the
tensor nuclear norm (TNN) is used as a convex surrogate for
the tubal rank [9], and the corresponding LRTC model can be
rewritten as:

arg min
X
||X ||∗, s.t. PΩ(X ) = PΩ(M), (1)

where ||X ||∗ is the TNN of tensor X (see details in Section
2).

Although the TNN-based model shows its effectiveness
to preserve the intrinsic structure of the tensor [10, 11], it
only considers the global correlation, which could cause the
recovered tensor to lose abundant details. In fact, not lim-
ited to the global correlation, the real-world data have the
property of nonlocal self-similarity. Recently, the nonlocal
self-similarity [12], which exploits the spatial redundancy
of nonlocal similar patches, has emerged as one of the most
successful regularizations for natural images.

The above analyses motivate us to take nonlocal self-
similarity into consideration. In this paper, we introduce an
implicit regular term to exploit the nonlocal self-similarity.
The proposed model contains two terms, one for the low-
rankness and another for the nonlocal self-similarity, i.e.,

arg min
X
||X ||∗ + λΦ(X ), s.t. PΩ(X ) = PΩ(M).

Instead of tailoring nonlocal regularizers, we tackle with
the implicit regularizer Φ(X ) by plugging in an off-the-shell
denoiser to express the nonlocal self-similarity prior and de-
sign a plug-and-play (PnP) [13] alternating direction method
of multipliers (ADMM) framework to solve the model.

The rest of this paper is organized as follows. Section
2 gives some notations and preliminaries. Section 3 intro-
duces the proposed model and algorithm. Section 4 reports
the results of the proposed method by numerical experiments.
Section 5 concludes this paper.
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2. NOTATIONS AND PRELIMINARIES

In this section, we give a brief overview of t-SVD [9]. For
a third-order tensor A ∈ Rn1×n2×n3 , we use A(k, :, :),
A(:, k, :), and A(:, :, k) to denote the kth horizontal, lateral,
and frontal slice, which corresponds with the notations in
Matlab. Especially, the ith frontal slice is also be represented
by A(i). We use Ā to denote the tensor generated by per-
forming Discrete Fourier Transformation (DFT) along each
tube of A, i.e., Ā = fft(A, [], 3).

Definition 1 (t-product [9]) The t-product C = A∗B ofA ∈
Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as

C(i, j, :) =

n2∑
k=1

A(i, k, :) ∗ B(k, j, :),

where the operation ∗ is circular convolution.

Definition 2 (Conjugate transpose [9]) The conjugate trans-
pose of a tensor A ∈ Rn1×n2×n3 is denoted as A∗, which
is obtained by conjugate transposing each of the frontal slice
and then reversing the order of transposed frontal slices 2
through n3.

Definition 3 (Identity tensor [9]) The identity tensor I ∈
Rn1×n2×n3 is the tensor whose first frontal slice is the iden-
tity matrix, and other frontal slices are all zeros.

Definition 4 (Orthogonal Tensor [9]) A third-order tensor
Q ∈ Rn1×n2×n3 is orthogonal if

Q ∗ Q∗ = Q∗ ∗ Q = I.

Definition 5 (f-diagonal tensor [9]) A tensor is called f-
diagonal if each of its frontal slice is a diagonal matrix.

Definition 6 (t-SVD [9]) The tensor A ∈ Rn1×n2×n3 can be
decomposed as

A = U ∗ S ∗ V∗,
where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is a f-diagonal tensor.

Note that we can efficiently obtain the decomposition by
computing a series of matrix SVDs in the Fourier domain [9].

Definition 7 (Tensor multi-rank [9]) The multi-rank of
A ∈ Rn1×n2×n3 is a vector r ∈ Rn3 , whose ith element
is the rank of the ith frontal slice of Ā.

Definition 8 (Tensor tubal rank [9]) The tubal rank of A ∈
Rn1×n2×n3 is defined as the number of nonzero singular
tubes of S, where S is from the t-SVD of A = U ∗ S ∗ V∗.

Definition 9 (Tensor nuclear norm(TNN) [9]) The tensor
nuclear norm of A ∈ Rn1×n2×n3 , denoted as ||A||∗, is de-
fined as the sum of singular values of all the frontal slices of
Ā, i.e.,

||A||∗ =

n3∑
i=1

||Ā(i)||∗.

3. PROPOSED MODEL AND ALGORITHM

3.1. Proposed Model

Considering a third-order tensor X ∈ Rn1×n2×n3 , the pro-
posed LRTC model can be written as follows:

arg min
X

||X ||∗ + λΦ(X ),

s.t. PΩ(X ) = PΩ(M),
(2)

where λ is the regular parameter, Φ(X ) is the regularization
term andM is the observed tensor.

3.2. Proposed Algorithm

By introducing auxiliary variables Y and Z , we can rewrite
(2) as follows:

arg min
X ,Y,Z

||Y||∗ + λΦ(Z) + ι(X ),

s.t. X − Z = 0,

X − Y = 0,

(3)

where ι(X ) denotes the indicator function, i.e.,

ι(X ) =

{
0, (i, j, k) ∈ Ω,

∞, otherwise.
(4)

Then the augmented Lagrangian function is:

Lβ1,β2
(X ,Y,Z,Λ1,Λ2) = ||Y||∗ + λΦ(Z)+ < X − Y,Λ1 >

+
β1

2
||X − Y||2F+ < X − Z,Λ2 > +

β2

2
||X − Z||2F + ι(X ).

(5)
According to the framework of ADMM, we solve (5) by

the following iterative scheme:

Yk+1 = arg min
Y
||Y||∗ +

β1

2
||X k − Y +

Λk1
β1
||2F ,

Zk+1 = arg min
Z
λΦ(Z) +

β2

2
||X k −Z +

Λk2
β2
||2F ,

X k+1 = arg min
X

β1

2
||X k − Y +

Λk1
β1
||2F

+
β2

2
||X k −Z +

Λk2
β2
||2F + ι(X k),

Λk+1
1 = Λk1 + β1(X k+1 − Yk+1),

Λk+1
2 = Λk2 + β2(X k+1 − Yk+1).

(6)

For Y-subproblem:

Yk+1 = arg min
Y
||Y||∗ +

β1

2
||X k − Y +

Λk1
β1
||2F . (7)

By doing t-SVD, X k +
Λk1
β1

can be decomposed into U ∗ S ∗
V∗. Then the subproblem can be solved by the singular value
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thresholding [14, 15] as:

Yk+1 = U ∗ C 1
β1

∗ V∗, (8)

where C 1
β1

is an f-diagonal tensor whose each frontal slice in

the Fourier domain is C̄ 1
β1

(i, j, k) = (S̄ 1
β1

(i, j, k)− 1
β1

)+.
For Z-subproblem:

Zk+1 = arg min
Z
λΦ(Z) +

β2

2
||X k −Z +

Λk2
β2
||2F , (9)

treating X k +
Λk2
β2

as the corrupted tensor, this subproblem
can be regarded as a denoising problem with the regularizer
Φ(Z). Given a regularizer Φ(Z), we have a corresponding
denoiser to tackle with the denoising problem. Instead of tai-
loring nonlocal regularizers, we promote the self-similarity
by off-the-shell denoiser. The idea is known as regularization
by denoising (RED) [16] which is also named plug-and-play
(PnP) [13]. Particularly, in the TNN model, we find that the
residual image of the recovered image and original image fol-
lows the Gaussian distribution (see Fig.1). Inspired by RED,
there are many off-the-shelf Gaussian denoiser to solve the
subproblem, e.g. BM3D [17], CBM3D [18], VBM3D [19],
and ITSReg [20]. For instance, when processing color im-
ages, we select CBM3D [18] denoiser to update Z , i.e. ,

Zk+1 = CBM3D(X k +
Λk2
β2
, σ), (10)

where σ (the value of σ see Section 4) is determined by λ
and β2. The parameter σ is linked to the noise level in i.i.d
Gaussian denoising, but here the σ is linked to the general
system error between X k +

Λk2
β2

and the original tensor.
For X -subproblem:

X k+1 =arg min
X

β1

2
||X k − Y +

Λk1
β1
||2F

+
β2

2
||X k −Z +

Λk2
β2
||2F + ι(X ).

(11)

This is a quadratic optimization problem which has the fol-
lowing closed-form solution:

X k+1 = PΩC (
β1Yk+1 + β2Zk+1 − Λk1 − Λk2

β1 + β2
) + PΩ(M).

3.3. Convergence

Although the effectiveness of PnP ADMM has been widely
proved, its convergence is still an open problem. Fortunately,
the convergence of our plug-and-play instance is guaranteed,
since the denoiser is a proximity operator [21].

The original image The recovered image The residual image

Fig. 1: The first row: the original image, the recovered image
by TNN, and the residual image between the original image
and the recovered image. The second row: the histogram of
the residual image.

4. EXPERIMENTS

We evaluate the performance of the proposed method, named
global low-tubal-rankness and nonlocal self-similarity (LTR-
NSS) on two kinds of tensor: color images and fluorescence
microscope images. The peak signal to noise rate (PSNR)
and the structural similarity index (SSIM) [22] are selected as
the performance evaluation indices.

All parameters of proposed methods are fine-tuned to
achieve the highest PSNR value. The parameter β1 and β2

are self-adapting which times ρ each iteration. The parameter
λ are typically selected from the set {10−1, 10−2, 10−3}, and
the initial value of parameters β1 and β2 are selected from
the set {10−1, 10−2, 10−3, 10−4}. The compared method-
s include TNN [9], HaLRTC [23], and TNN-3DTV [24].
And the parameters of compared methods are selected to
reach their best performance referring to the related papers
[9, 23, 24]. We normalized all images to the range of [0, 1].
Each image is the size of 256× 256× 3.

4.1. Color Image Completion

In this experiment, we selected two color images named lena
and barbara. The observed tensors are randomly sampled by
pixel and the sampling rates (SR) are 10%, 20%, and 30%, re-
spectively. We selected CBM3D as the denoiser because this
Gaussian denoiser works by nonlocal self-similarity and per-
forms excellently in color image denoising. We set λ = 0.01,

β1 = β2 = 0.1, ρ = 1.1, and σ = 1/λβ
1√
k

2 . The σ gets
smaller as the iteration goes on because the general system
error is getting smaller.
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Table 1: PSNR and SSIM values of the results by different methods. The best and second values are highlighted in bold and
underline, respectively.

Images
PSNR SSIM

HaLRTC TNN TNN-3DTV LTR-NSS HaLRTC TNN TNN-3DTV LTR-NSS

Lena
256× 256× 3

10% 19.36 18.95 22.97 28.52 0.4425 0.3483 0.7123 0.8866
20% 22.74 22.78 26.11 32.09 0.6176 0.5543 0.8202 0.9378
30% 25.33 25.49 28.08 34.42 0.7433 0.6969 0.8766 0.9612

Barbara
256× 256× 3

10% 18.39 18.24 21.92 28.66 0.4056 0.3591 0.6496 0.9006
20% 21.86 21.89 25.05 33.29 0.6044 0.5682 0.7840 0.9571
30% 24.30 24.72 26.93 36.02 0.7335 0.7161 0.8466 0.9754

Observed image HaLRTC TNN TNN-3DTV LTR-NSS Original image

Fig. 2: Completion results for color images (SR=20%).

Observed image HaLRTC TNN TNN-3DTV LTR-NSS Original image

Fig. 3: Completion results for fluorescence microscope images (SR=20%).

Tab. 1 shows the PSNR and SSIM values of different
methods. It shows that the proposed method outperforms oth-
er methods both on PSNR and SSIM. The TNN and HaLRTC
achieve similar result and TNN-3DTV achieves the second
high PSNR and SSIM values with the power of TV regulariz-
er which expresses piecewise smoothing prior.

Completion results of different methods are illustrated
partly in Fig. 2 (SR=20%). Visually, it can be seen that our
proposed method performs best and the details are nicely
recovered.

4.2. Fluorescence Microscope Image Completion

In this subsection, fluorescence microscope images were se-
lected to test our proposed model. As fluorescence sample im-
ages are mostly images of observed cells, the images have the

property of nonlocal self-similarity. CBM3D is still adopted
to process such images. We set β1 = β2 = 0.1, λ = 0.1,

ρ = 1.1, and σ = 1/λβ
1√
k

2 . The completion results of dif-
ferent methods are illustrated in Fig.3. It can be seen that our
method gains superior performance to compared methods.

5. CONCLUSION

In this work, we designed a novel tensor completion mod-
el, which takes both the global correlation and nonlocal self-
similarity into consideration. The TNN guarantees the low-
rankness of tensor and the denoiser selected appropriately fo-
cuses on nonlocal self-similarity in real-data. An efficient P-
nP ADMM framework was developed to tackle the proposed
model with guaranteed convergence. Numerical experiments
on different tensor data showed the superiority of our method
over many state-of-the-art methods.
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